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Product Design: Accounting for Government Policy, Corporate social 

Responsibility, Supply Chain, Sustainability, and Human Senses 

 

ZHANG, Xiang 

Department of Chemical and Biological Engineering 

The Hong Kong University of Science and Technology 

 

Abstract 

Chemical processing industry has been expanding its focus from primarily business-to-business 

products (B2B) to business-to-consumer (B2C) products. The production of B2B products 

generally emphasizes on process design and optimization, whereas the production of B2C products 

focuses on product quality, ingredient selection, and product structure. Product pricing, costing, 

and competitive analysis must be considered as well. By far, these considerations have already been 

accounted for in the Grand Product Design Model, which consists of a process model, a property 

model, a quality model, a cost model, a pricing model, an economic model.1,2 Despite the advances 

of the previous Grand Product Design Model, many issues have still not been fully understood and 

incorporated into. Thus, another evolvements and improvements are highly desired to further 

improve the previous Grand Product Design Model and thus promote the efficiency of new product 

development. In this thesis, the influences of the business and management issues (i.e., government 

policy, corporate social responsibility, supply chain, sustainability, and human senses) on product 

design and development are concerned.  
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Four extensions on the Grand Product Design Model have been explicitly made. In Chapter 2, 

the impact of government policy on company profit and corporate social responsibility is studied. 

The interactions of government-company-consumer are elaborated and a multi-objective 

optimization framework is proposed to account for these interactions. In Chapter 3, an integrative 

design procedure is developed where two important issues in supply chain (i.e., make-or-buy 

analysis and supplier selection) are explicitly incorporated into product design for generating more 

profitable products. In Chapter 4, product sustainability is concerned. A systematic framework is 

proposed for sustainable chemical product design where life cycle sustainability, rule-based 

methods, and general sustainable product design principles and knowledge are properly integrated. 

In Chapter 5, the Grand Product Design model is expanded as a generic approach to food product 

design where the influence of human senses on food quality is considered. A hybrid machine 

learning and mechanistic modeling approach, formulated as a grey-box optimization problem, is 

proposed to expedite new food product design. Finally, Chapter 6 summarizes the major 

contributions and the future work. 
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Chapter 1: Introduction 

1.1.Background 

1.1.1. Emergence of Chemical Product Design in Chemical Engineering 

Many chemical products are utilized in the modern society for its survival and prosperity, such 

as fuels for transportation; fertilizers for agriculture; medicines for healthcare; detergents for 

cleaning. The development and evolution of modern society greatly depends on the continuous 

availability of these products and the introduction of new and better products. Figure 1.1 represents 

a product tree that covers all the types of chemical products.3 Typically, a product can be obtained 

from resources placed lower than it on the product tree. For instance, the basic chemicals are 

produced from the natural resources such as petroleum, natural gas, air, etc. Basic chemicals are 

used to synthesis intermediate products such as methanol, urea, acetic acid, etc. Additionally, acting 

as root, basic and intermediate chemicals are utilized to manufacture different consumer products.  

 

Figure 1.1 Chemical product tree3 
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In general, the basic and intermediate products are the so-called ‘commodity products’. They 

are often produced in amounts of over 10000 tons annually. Over the past 50 years, the chemical 

industry has been dominated by the production of commodity products. Most research in the 

chemical engineering discipline focused on the synthesis, design, optimization, operation, and 

control of processes for producing commodity chemicals. Ideally, they should be produced as 

cheap, pure, and in a large-quantity as possible. In fact, through all the efforts made within the 

chemical industry, significant achievements have already been made to improve the performances 

of commodity production processes. For instance, chemical engineers already changed the clothes 

on human backs and increased the food on human tablets.4  

Currently, the chemical industry is changing dramatically. On the one hand, it is not easy to 

significantly enhance the production processes for commodities, especially reduce the production 

cost. On the other hand, consumers are no longer satisfied by only using a limited number of 

products. The increasing needs for better and more versatile chemical products should be met as 

soon as possible. Thus, since the year 2000, chemical product design or chemical product 

engineering has already been recognized as the third paradigm of chemical engineering.5,6 Many 

researchers approved that in addition to commodity products, consumer products such as detergent, 

paint, smart window, etc. should be emphasized in academic research and teaching.  

Despite the early enthusiasm and substantial efforts, it was felt by many that research activities 

on chemical product design have been flagging and there are many challenges in pushing chemical 

product design forward.7 One of the major challenges is that consumer products are so diverse that 

it is hard to define the scope of chemical product design. Gani and Ng7 classified the diverse 

consumer products into three types: 
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 Formulated product: a mixture of selected components together to get the desired product 

attributes such as hand lotion, liquid detergent, shampoo, etc. 

 Functional product: those products made up of materials in a certain structure to perform a 

desired function such as controlled-release herbicide granule, moisture absorber, etc. 

 Device: perform a certain function often to an input stream so that the output stream has 

some desired characteristics such as indoor air purifier, water filter, wine aerator, etc.  

Each type of chemical product is manufactured by different processes and has different ingredients 

and structures. In addition, each type of chemical product has different prices, costs, supply chains, 

etc. Clearly, the issues in chemical product design are multidisciplinary in nature.1 The success of 

chemical product design depends on product quality, product manufacturing, product pricing, 

product cost, supply chain, government policy, etc. Thus, it is hard to develop a general approach 

for chemical product design.  

For any new product development project, there are four broad questions to be answered: 

1. What product to make?  

2. How to make the desired product? 

3. Do we want to make the identified product? 

4. If the above is affirmative, how do we come up with such a product efficiently and 

profitably? 

In answering the first question, market study should be conducted to identify the consumer needs. 

Meanwhile, new product conceptualizations are generated so that several product alternatives can 

be obtained. Then, we have to perform prototyping, process design, feasibility study, and 

engineering design so that the desired product alternative can be manufactured in a large quantity. 
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For the third question, we need to consider the business decision making to arrive at a successful 

product. The product must be profitable, environmental friendly, sustainable, etc. Last but not least, 

when we answer the above questions, we need to consider how the projects can be performed in an 

efficient manner. This requires clear understandings on every task in new product design. 

Therefore, a generic and multidisciplinary design framework or model is highly desired to manage 

new product development projects efficiently.1,7 

1.1.2. The Evolution of Grand Product Design Model 

1.1.2.1.From Ingredients and Process Design to Product Quality in 2002 

 

Figure 1.2 Factors determining product performance (from Wibowo and Ng8) 

Since the year 2000, Ng and his students have started to study product-centered processing. 

Systematic framework has been developed for designing new products with desired quality and the 

corresponding manufacturing processes, such as creams and pastes, dry toner, cosmetics, and 

pharmaceutical tablets and granules.8-10 At that time, Figure 1.2 was proposed to account for the 

conceptual relationships from ingredients and processes to product performances. The arrows 

among different boxes were represented by mathematical models and heuristics. To design a new 

product, the selection of active and supporting ingredients is concerned. Each ingredient has 
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different properties (i.e., physical, chemical and biological properties). In addition, process 

flowsheet and operating conditions should be properly designed to generate the desired product 

structure. Then, the technical performances of products can be decided based on the ingredient 

properties and product structure.  

Clearly, such a framework in Figure 1.2 only aims to design a product with desired quality. In 

other words, only the first two questions were answered: what to make and how to make? However, 

whether the product is profitable and how the product can be commercialized efficiently were not 

concerned at that time (i.e., before the year 2003). Moreover, only mathematical models and 

heuristics were utilized. Nevertheless, it has been gradually found that for designing many new 

chemical products, a limited number of models and heuristics are available. In this case, how the 

arrows should be represented is not clear yet. Therefore, with these limitations, substantial 

improvement on Figure 1.2 is required. 

1.1.2.2.Extensions to Product costing, Pricing, and Economic Analysis in 2015 

 

Figure 1.3 Grand Product Design model (adapted from Fung et al.2) 

Quality model,
q Tq (p, s, u)
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Active ingredients
Supporting ingredients 

(solvents, additives)

Operating conditions, pdop

Temperature
Pressure

Agitation speed

Process flowsheet, pdfs

Unit operations
Equipment geometry

Materials of construction

Material properties, p

Physical properties
Chemical properties
Biological properties

Product 
quality, q

Product structure, s

Particle size distribution
Phase volume fraction

Particle shape
Macro form

Property model, 
p Tp(x)

Process model,
s  Ts(x, pd)

Product cost, cm
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Economic 
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Government regulations

Process design, pd

Product for 
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As the research on chemical product design progressed, it has been gradually recognized that 

the success of chemical product design does not simply depend on product quality. Many other 

issues can have significant impact such as pricing, product cost, government policy, supply chain, 

etc. Bagajewicz11 proposed a new pricing model which accounts for consumer awareness and 

preferences for the new product in comparison to competing products. This model leads to a way 

relating product quality to product price and demand and has been applied to the design of wine,12 

carpet deodorizers,13 and lotion.14 Cheng et al.15 developed an integrative framework that covers 

marketing, product design and prototyping, process design and manufacturing, cost estimation, and 

economic analysis. Additionally, Bernardo and Saraiva16 proposed a conceptual model which 

firstly considered the influence of product use conditions on product quality. Later on, based on 

these progresses, the Grand Product Design Model in Figure 1.3 was developed in the year 2015. 

Compared with Figure 1.2, the boxes highlighted within the red envelop were added which includes 

product price and market share, product cost, nonmanufacturing cost, economic analysis, and 

product for commercialization. Additionally, the model was formulated as an optimization problem 

in Eq. 1.1-1.8. Note that this was also the first time that the ‘Grand Product Design Model’ 

appeared.  

max [𝑒, 𝑜𝑓]         (1.1) 

Subject to  𝑠 ← 𝑇𝑠(𝑥, 𝑝𝑑)     (process model) (1.2) 

  𝑝 ← 𝑇𝑝(𝑥)     (property model) (1.3) 

  𝑞 ← 𝑇𝑞(𝑝, 𝑠, 𝑢)    (quality model) (1.4) 

  𝑐𝑚 ← 𝑇𝑐𝑚(𝑥, 𝑝𝑑)    (cost model)  (1.5) 

  𝑃𝑝𝑟𝑚𝑠 ← 𝑇𝑝𝑟𝑚𝑠(𝑞; 𝑌)    (pricing model) (1.6) 
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  𝑒 ← 𝑇𝑒(𝑐𝑚, 𝑐𝑛𝑚, 𝑃𝑝𝑟𝑚𝑠)   (economic model) (1.7) 

  𝑐𝐿 ≤ 𝑓 (𝑝, 𝑠, 𝑢, 𝑥, 𝑝𝑑, 𝑞, 𝑐𝑚, 𝑐𝑛𝑚, 𝑃𝑝𝑟𝑚𝑠) ≤ 𝑐𝑈(constraint)  (1.8)  

Moreover, since only using mathematical models and heuristics cannot perform chemical 

product design effectively, the usage of other methods or tools are necessary. Conte et al.17,18 

developed a systematic methodology which integrates computer-aided tools and experimental 

testing for designing liquid formulated products such as water-based insect repellent and 

waterproof sunscreen. Mattei et al.19 expanded the methodology to emulsion-based formulated 

product. In addition, Korichi et al.20 presented a multi-level molecular knowledge framework where 

various databases were utilized to generate new ingredients. Based on these studies, it can be found 

that in addition to mathematical models and heuristics, databases, experiment, and tools can still 

be applied for different product design activities (i.e., correlating the boxes in Figure 1.3). Thus, 

upon the Grand Product Design model proposed, the arrows which are described as relationship 

models (i.e., arrows in Eq. 1.1-1.8) were considered to include mathematical model, heuristics, 

databases, tools, and experiments. Moreover, all the design activities are generally inter-correlated 

directly or indirectly. From this perspective, there is no need to add arrows. However, considering 

the messy interactions, it is impractical to cover all the possible interactions simultaneously for 

designing new products. Typically, the importance of certain arrow varies for different products. 

For instance, the arrow from microstructure to quality is critical for die attached adhesive, instead 

of detergent. Since the quality of the adhesive greatly depends on the microstructure of metal 

particles in the polymeric matrix. However, the quality of detergent is significantly by ingredient 

properties. In this case, the identification of the most critical design activities and most important 

interactions are highly desired. Thus, the arrows added in the Grand Product Design model should 

account for the direct and significant interconnections among various design activities. For 
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designing a specific product, some arrows are definitely worth to consider while others are not 

influential. 

Despite the great improvement of the Grand Product Design Model in the year 2015, it is worth 

to noting that the box ‘other factors’ was added to emphasize that other factors (e.g., sustainability, 

government policy, supply chain, etc.) still have great impacts on product design and development. 

The variable ‘𝑜𝑓’ in Eq. 1.1 was temporarily used as an objective function to denote their impacts. 

However, at that time the exact impacts of these factors were not clear yet. It was suggested that 

their influences should be explicitly studied in the future. Therefore, another extensions for the 

Grand Product Design Model are highly desired. 

1.2.Motivations and Thesis Structure 

This thesis aims to investigate how the five business and management factors (i.e., government 

policy, corporate social responsibility, supply chain, sustainability, and human senses) can affect 

the product design and development. In other words, based on the original Grand Product Design 

Model published in 2015, this thesis should properly integrate the five boxes into the original 

model. Arrows should be added to represent how each new box can be correlated to others. 

Moreover, appropriate methods must be developed to tell when and how these factors can be 

explicitly considered for new product design.  

In chapter 2, a multi-objective optimization framework that considers the influence of 

government policy on product design is presented. The government policy affects product design 

in the form of financial and non-financial incentives, and regulations. The consumers affect product 

design by their purchase behavior that is in turn influenced by price, product quality, and the 

presence of competing products. The company responds to these influencing factors to design a 

product with as high a profit as possible while satisfying corporate social responsibility. Different 
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models as well as rule-based methods –quality, consumer utility, product demand, product cost, 

capital budgeting, social indices, and government policy –are presented. A solar photovoltaic case 

study is used to illustrate the framework. 

In chapter 3, a new product design framework is presented with the simultaneous consideration 

of make-or-buy analysis and supplier selection. Consumer preferences are first identified. Product 

ingredients are classified into different types based on their functionalities. For each ingredient 

type, potential ingredient candidates are generated from material databases or predictions using 

computer-aided tools. Heuristics and models (e.g., statistical, empirical, and mechanistic) are used 

to screen the ingredients and to design a process to manufacture a product with the desired product 

quality. Then, product price and market demand are determined by using a pricing model. After 

this, make-or-buy decisions are made through heuristics and suppliers are selected to maximize the 

profit. Two case studies consisting of light duty liquid detergent and controlled release granular 

herbicide are provided to illustrate the framework. 

In chapter 4, a systematic framework is proposed for sustainable chemical product design. The 

product technical requirements are first identified as design constraints. Then, a base-case product 

is generated as a reference on top of which a more sustainable product is designed. To do so, the 

life cycle of base-case product (in particular, whether and how it should be recycled) is decided by 

using life cycle sustainability assessment (LCSA) or rule-based methods depending on the 

availability of life cycle inventory data. In addition, the hotspots (i.e., life cycle stages with major 

impact) are identified. Afterwards, to reduce the impact on hotspots, product design targets and 

design alternatives are generated using knowledge-base and heuristics. Lastly, LCSA or rule-based 

methods is applied to decide the most sustainable product from the generated product design 
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alternatives. Two case studies – composite bumper beam and lithium ion battery – are provided to 

illustrate the framework. 

In chapter 5, the Grand Product Design model is expanded as a generic approach to food product 

design and the influence of human senses on food product quality is studied. To expedite the 

development of new food products, a hybrid machine learning and mechanistic modeling approach 

is proposed. Sensorial ratings are predicted using a machine learning model trained with historical 

data for the food under consideration. The approach starts by identifying a set of food ingredient 

candidates and the key operating conditions in food processing based on heuristics, databases, etc. 

Food characteristics such as color, crispness, and flavors are related to these ingredients and 

processing conditions (which are design variables) using mechanistic models. The desired food 

characteristics are optimized by varying the design variables to obtain the highest sensorial ratings. 

To solve this grey-box optimization problem, genetic algorithm is utilized where the design 

constraints (representing the desired food characteristics) are handled as penalty functions. A 

chocolate chip cookie example is provided to illustrate the applicability of the hybrid modeling 

framework and solution strategy. 

Finally, a brief summary of this work is provided and a few recommendations for future work 

is represented. 
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Chapter 2: Product Design: Impact of Government Policy and Consumer 

Preference on Company Profit and Corporate Social Responsibility 

2.1.Introduction 

Due to increasing global competition, it is a constant struggle for chemical companies engaging 

in commodity chemicals to maintain a sufficiently high profit margin.21 In response to this 

challenge, the chemical processing industry as a whole has been expanding from a primarily 

process-centric industry towards a more product-centric one.22,23 Although this shift has slowed 

down recently because of the availability of shale gas, different types of product development 

projects are currently being implemented by many companies.3 According to the DuPont Data 

Book,24 1643 new products were commercialized in the year 2015 and 31% of sales were derived 

from products launched in the previous four years. To succeed in product development, the 

collaboration of personnel from R&D, engineering, marketing, finance, and business development 

is crucial.1,4,25 

Product development involves different tasks such as project management, marketing, research 

and design, and so on spread out in three phases: product conceptualization, detailed design & 

prototyping, and product manufacturing and commercialization.26,27 After over two decades of 

research on chemical product design, much is known for handling these tasks effectively. For 

instance, Smith and Ierapepritou23 used conjoint analysis to select product composition and process 

operating conditions so that consumer utility is maximized. For a similar objective, Lee et al.28 

proposed a knowledge-based ingredient formulation system to facilitate the communication 

between the sales personnel and formulators so that the most popular formulations are offered to 

the consumers. The methods for formulating a wide variety of chemical products ranging from fuel 

additives to refrigerants have been developed.16,29-32 The integration of product and process design 
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has also attracted much interest.8-10,33,34 An interesting example is the approach proposed by 

Bernardo and Sarariva16 that treats a product design problem as the inversion of three design 

functions: quality, property, and process functions. Product pricing is an important task in product 

commercialization. Bagajewicz11 derived a pricing model that relates product price to product 

quality, the consumers’ familiarity of the product, and the price and quality of competing products 

on the market. This model has been applied in the design of various products such as disinfectant, 

wine, and skin lotion.12-14,35 Based on this pricing model, Chan et al.36 proposed a new framework 

to systematically determine the model parameters for a completely new or an existing but improved 

chemical product. Recently, Fung et al.2 proposed the Grand Product Design Model which shows 

how the key issues in product development (e.g., ingredient selection, process design, product 

quality, product cost, and the economics of a product development project, etc.) are interconnected. 

It was pointed out that government policies and corporate social responsibility should be considered 

alongside profit analysis. However, how these two factors influence product development has not 

been elaborated. Thus, these two issues are explicitly considered in this work. 

The impact of government policies, in the form of regulations and incentives, on product 

development is shown in the expanded Grand Product Design Model (Figure 2.1). The 

‘Government policy’ icon and the ‘Policy model’ have been newly added. Government regulations 

can prohibit the use of certain chemicals because of environmental and safety concerns. This is 

captured by the policy model on the top-left corner of Figure 2.1. The ban on DDT (dichloro-

diphenyl-trichloroethane) as a pesticide and the phasing out of phosphates in detergents are classic 

examples. Regulations can also influence plant design. For example, regulations can dictate how a 

waste stream should be treated in a chemical plant. The incorporation of regulatory requirements 

into product design drives the implementation of eco-design and shortens the time to market.37  
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Figure 2.1 An expanded Grand Product Design Model for decision making in product 

development 

Government incentives can provide the required financial or non-financial resources (such as 

subsidy, information, product promotion, etc.) for product development.38 These are captured by 

the three relationships linked to the Government policies icon at the bottom-left of Figure 2.1. Most 

of these incentives are designed to invigorate the local economy.39 For instance, the US government 

would procure solar panels manufactured in the US for local job creation. You et al.40 considered 

the impact of government production and construction incentives on choosing the location for the 

development of cellulosic biofuel. Moreover, another influencing factor on product development 

is the increasing adoption of corporate social responsibility (CSR) with which a firm advances 

social good that goes beyond the firm’s financial interest and what is required by law.41,42 Thus, as 

shown in Figure 2.1, another icon ‘Corporate social responsibility’ and the ‘CSR’ model have been 
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newly added. Clearly, whether the targets of CSR are achieved depends on the various decisions 

made during product development.  

In this study, the impact of government policy on product development is explicitly considered 

from the company’s perspective. In developing a new product, ingredients and processes are 

identified to provide a product with the desired quality. In addition, decisions on product price, 

marketing strategy, labor force, etc. should be made. The problem we aim to solve as follows. 

Given different government policies how decisions should be made for the company to make profit 

and achieve CSR. Note that as CSR covers very broad environmental and social performance, only 

certain key aspects are considered in this study. 

The chapter is organized as follows. First, the way in which the government, company, and 

consumer interact is elucidated. Then, various models for product design such as product quality, 

consumer utility, and demand that account for these interactions are presented. Based on these 

models, a multi-objective optimization framework is developed to quantify the trade-off between 

profitability and CSR for a given set of government regulations and incentives. Finally, a solar 

photovoltaic case study is discussed to illustrate the application of the developed framework.  

2.2.Government-Company-Consumer Interactions 

Three stakeholders, namely government, company, and consumer, interact with one another in 

product development as shown in Figure 2.2. Government launches various incentives and 

regulations to improve the quality of life, to keep the society competitive, and to ensure the safety 

of its citizens. Company aims to carry out product development projects to satisfy the needs and 

wants of consumers at a profit, while being socially responsible. Consumers primarily look for 

products that meet their needs and wants at the lowest price. These behaviors are detailed below. 

2.2.1. Government Policy  
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Government incentives can be broadly classified into two groups: Product Creation (PC) and 

Market Creation (MC). The former are the incentives that are used for developing new products or 

upgrading existing ones. The latter are used to open up market for the product being developed. 

The incentives can also be classified as financial or non-financial. The financial incentives can be  

 

Figure 2.2: The government-company-consumer relationship triangle 

given to the company or consumer through direct payment or tax reduction. All financial incentives 

are countable in monetary terms. Non-financial incentives are hard to count in monetary terms and 

include the provision of free information, technical expertise, and network to the company to spur 

product development. Table 2.1 shows several examples of government incentive programs thus 

classified. For example, a government can offer an R&D grant to a company to develop a new 

product. Alternatively, a government can train workers for a specific industrial sector so that 

companies can benefit from the availability of a suitable workforce in a timely manner. 

In general, only firms benefit from PC incentives. The impacts of various PC incentives on 

product development are given in the top two rows in Table 2.2. For instance, R&D funding, seed 

capital, funding for purchasing technology and equipment, and availability of a technical 

GovernmentConsumer

Company

Objectives: profit and corporate 

social responsibility

Objective: consumer 

satisfaction

Incentive & regulation

Objectives: quality of life, 

competitiveness of society,  

and public safety
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Table 2.1 The classification of various government incentive programs 

 Financial Non-financial 

Product 

Creation 

• R&D grant and tax rebate 

• Seed capital 

• Funds for purchasing 

technology & equipment 

• Provision of land, professionals by 

immigration and education, etc. 

• Cooperation and consultation with 

public research centers and universities 

• IP protection 

Market 

Creation 

• Consumer subsidy and tax 

rebate 

• Government procurement 

• Product promotion, information 

exchange, tradeshow, and advertisement 

• Public guarantee 

• Government sponsored worker training 

• Infrastructure development 

 

community for consultation and cooperation are all conducive to the development of high-quality 

and low-cost products. Non-financial PC incentives such as provision of land and channels for 

professional immigration can help reduce manufacturing as well as nonmanufacturing costs.  

MC incentives can be given to company or consumer to open up the market so as to accelerate 

the achievement of economies of scale. The impacts of different MC incentives are given in the 

bottom two rows of Table 2.2. For example, government procurement can lead to a substantial 

increase in product demand. The government can also provide subsidy to consumers to buy a type 

of product it favors. Similarly, many non-financial MC incentives such as free promotion, public 

guarantee, and worker training can help reduce nonmanufacturing costs (e.g., marketing expenses) 

and increase product demand. 

Such incentive schemes are available in almost all the economies in the world. Example 

schemes in Germany, Hong Kong, Singapore, and the United States are listed in Table 2.3. Table 

A2.1-A2.4 in the Appendix offer a brief description of these government incentive programs to 

validate the incentive classification scheme and impact analysis in Table 2.1 and 2.2, respectively. 

For example, the feed-in tariff (FIT) in Germany was launched to kick-start the adoption of solar 
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photovoltaic (PV) as a means to replace fossil fuels by renewable energy (Table A2.1). In the past 

decade, about 1.5 million PV systems have been installed in Germany and the price has dropped 

by more than 70%. Another example is the Innovation & Technology Fund (ITF) set up by the 

Hong Kong government in 1999 to provide research funding to companies and universities to 

conduct R&D (Table A2.2). With the government funding, the companies can reduce the R&D 

expenses and develop new technologies to upgrade the products. The Singapore government 

launched the TradeXchange initiatives through which businesses can efficiently exchange the 

supply-demand information to facilitate product logistics (Table A2.3). This program can increase 

product demand by avoiding unnecessary out-of-stock or shortage and reduce supply chain costs. 

Table 2.2 Impact of each government incentive listed in the Table 2.1 

 Government incentives 
product 

quality 

product 

utility 

product 

demand 

manufacturing 

cost 

nonmanufacturing 

cost 

Product 

creation 

financial 

R&D grant and tax rebate ↑    ↓ 

Seed capital ↑   ↓ ↓ 

Funds for purchasing 

technology & equipment 
↑   ↓  

Product 

creation 

non-financial 

Provision of land, 

professionals, etc. 
   ↓ ↓ 

Cooperation & consultation ↑     

IP protection    ↓  

Market 

creation 

financial 

Consumer subsidy and tax 

rebate 
 ↑ ↑   

Government procurement   ↑   

Market 

creation 

non-financial 

Promotion, information 

exchange, tradeshow, and 

advertisement 

  ↑  ↓ 

Public guarantee   ↑   

Government sponsored 

worker training 
    ↓ 

Infrastructure development     ↓ 

↑: upward arrow means increase; ↓: downward arrow means decrease 
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Table 2.3 Government incentive programs in various economies 

  Germany Hong Kong Singapore United States 

Product 

creation 

Financial ERP ITF RISC SBIR 

Non-financial PG R&D centers WSQ CRADA 

Market 

creation 

Financial FIT GSP DTD CPG 

Non-financial BAFA BDP TXC FEMP 
 

Lastly, the Cooperative Research & Development Agreements (CRADA) program developed by 

the United States government provided joint collaborations between government agencies and 

private companies to speed up the commercialization of high-quality products (Table A2.4). Note 

that different economies may provide the same type of incentive albeit to different extents. The 

information is of interest to companies interested in choosing a production site in different countries 

and can be obtained from the government official documents and websites. For instance, as listed 

in Table A2.1, the details of Germany’s feed-in tariff program is available on the website labelled 

a3. China offers a similar program and the tariff rate can be found on the Chinese official website.43 

In addition to incentives, the development of new products can be initiated by regulations. For 

instance, to replace the phosphate-based materials to handle hard water, detergent manufacturers 

have introduced zeolite A-polycarboxylate and sodium citrate, which are not fertilizers.44 

2.2.2. Company Decision Making 

A firm’s main objective is to earn profit for its shareholders. This requires the participation of 

stakeholders at all organizational levels.27 The R&D department is responsible for identifying new 

products and processes. The business unit formulates a business plan that includes product 

specifications, estimated product cost, projected product demand, necessary financial and human 

resources, and considerations of government incentives and regulations. Then, decision makers at 

the corporate level decide whether and how to implement the product development project to 
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maximize profit, and how to fulfill CSR. To date, firms, either initiated by management voluntarily 

or nudged along by the government and consumers, are more likely to devote considerable time, 

effort, and money to serve society. These can include donation to charities, and building a plant at 

a certain location to provide job opportunities to the locals.  

2.2.3. Consumer Decision Making 

Consumers make purchase decisions to meet their needs based on their preferences and product 

price. In microeconomics, this consumer behavior is captured by the maximization of a utility 

function in which a rational consumer buys the product that offers maximum satisfaction from a 

set of alternatives subject to a limited consumer budget. Government incentives such as reduced 

sales tax and cash payment can significantly influence consumers’ purchase decision. For instance, 

the California’s Clean Vehicle Rebate Project offered an over $2000 subsidy in the form of tax 

rebate to electric vehicle buyers. The impact on sales can be very significant. Consider the tax credit 

and sales of Tesla in Hong Kong. With the tax exemption provided by the Hong Kong government, 

consumers only need to pay the effective price of HK$72,900 for the Model S. However, after the 

tax credit was stopped in April 2017, consumer must pay the effective price of HK$118,400 for the 

same Model S. After the cancellation of tax credit, the Tesla first-time registration fell from 2939 

in March to zero in April.45 A similar drop in sales occurred in the U.S. The end of a $5,000 Georgia 

state tax credit sent EV sales down 90% over the course of a year.46  

2.3.Multi-objective Optimization Formulation 

A multi-objective optimization model for product development that accounts for the 

government, company, and consumer interactions, which is a subset of the Grand Product Design 

Model, is presented below. A company maximizes its profit for a new product development project 

in terms of the net present value (NPV) and CSR in terms of a composite social index (SI) in Eq. 
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2.1. This optimization model has nine supporting models. NPV is calculated in capital budgeting 

in Eq. 2.2. SI is evaluated in Eq. 2.3 based on the decisions on the ingredients (𝑥), the manufacturing 

process (𝑝𝑑), labor (𝑙𝑎), waste treatment (𝑤𝑡), marketing activities (𝑚𝑘), product price (𝑝𝑟), and 

R&D activities (𝑟𝑑). Note that the price can be considered as a vector because price may vary in 

different geographical regions and demographics based on the pricing strategy.36 Moreover, 

government policy (𝐺) is given and Eq. 2.4 shows how company management should consider the 

utilization of known government incentives for product and market creation (𝐼𝐶𝑃𝐶 and 𝐼𝐶𝑀𝐶) and 

comply with government regulations (𝐺𝑟). Meanwhile, Figure 2.3 is a refined version of Figure 2.1 

focusing on the impact of government policies. Based on the analysis in Table 2.2, the dotted lines 

show how government policies can explicitly affect various aspects ranging from material selection 

to market demand. Note that all the involved variables are consistent with the ones in the Grand 

Product Design Model in Figure 2.1. If a variable is not underlined such as market size (𝑌) and 

demand (𝑑), it is a scalar. An underlined variable can be a vector such as a list of product qualities 

(𝑞) or labor costs for different workers (𝑙𝑎). It can also represent a composite variable such as a 

manufacturing plant (𝑝𝑑) or a waste treatment plant (𝑤𝑡). 

Maximize 𝑁𝑃𝑉, 𝑆𝐼         (2.1) 

Subject to  

𝑁𝑃𝑉 ← 𝑇𝑒(𝑝𝑟, 𝑑, 𝑐𝑚, 𝑐𝑛𝑚)    (Economics)   (2.2) 

𝑆𝐼 ← 𝑇𝑠(𝑥, 𝑝𝑑, 𝑙𝑎, 𝑤𝑡, 𝑚𝑘, 𝑝𝑟, 𝑟𝑑)   (CSR)    (2.3) 

𝐺 ← [ 𝐺𝑟 , 𝐼𝐶𝑃𝐶 , 𝐼𝐶𝑀𝐶]     (Government policy)  (2.4) 

[𝑥, 𝑝𝑑] ← 𝑇𝑥𝑝𝑑(𝐺𝑟)    (Materials & Processes)  (2.5) 

𝑞 ← 𝑇𝑞(𝑥, 𝑝𝑑, 𝑟𝑑, 𝐼𝐶𝑃𝐶)    (Quality)    (2.6)  
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𝑝𝑢 ← 𝑇𝑝𝑢(𝑞, 𝑝𝑟, 𝐼𝐶𝑀𝐶)    (Utility)    (2.7) 

𝑑 ← 𝑇𝑑(𝑝𝑢, 𝑝𝑢𝑐 , 𝑚𝑘, 𝑌, 𝐼𝐶𝑀𝐶)   (Demand)    (2.8) 

𝑐𝑚 ← 𝑇𝑚(𝑥, 𝑝𝑑, 𝑙𝑎, 𝑤𝑡, 𝐺𝑟 , 𝐼𝐶𝑃𝐶)   (Manufacturing costs)   (2.9) 

𝑐𝑛𝑚 ← 𝑇𝑛𝑚(𝑚𝑘, 𝑟𝑑, 𝐼𝐶𝑃𝐶 , 𝐼𝐶𝑀𝐶)   (Nonmanufacturing costs)  (2.10) 

𝑐𝐿 ≤ 𝑓 (𝑥, 𝑝𝑑, 𝑙𝑎, 𝑤𝑡, 𝑚𝑘, 𝑝𝑟, 𝑟𝑑) ≤ 𝑐𝑈  (Bounds)    (2.11) 

 

Figure 2.3: Multi-objective optimization framework for business decision making 

The supporting models are shown as relationships with an arrow ← instead of an equal sign, 

which signifies an equation. This emphasizes the fact that the dependent variable (LHS) is 

determined from the independent variables (RHS) using rule-based methods such as heuristics, 

model-based methods such as heat and mass transport equations, databases, tools, and experimental 
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results. In this work, heuristics are first used to reduce the relationships to equations, which are 

then solved using optimization software.  

For the new product, material selection and process design are regulated by government 

regulations in Eq. 2.5 such as the DDT and phosphates examples. In other words, Eq. 2.5 can be 

interpreted as the constraints on material selection and process design. Additionally, certain product 

quality as given in Eq. 2.6 should be achieved. Eq. 2.7 shows the dependency of product utility 

(𝑝𝑢) on consumers’ satisfaction of the product. There are two types of utility functions: direct utility 

function and indirect utility function. The former is a function of the amount of consumed products 

such as the Cobb-Douglas utility function while the latter is a function of quality and effective 

price.47-49 Since indirect utility directly reflects consumer preferences, it is used in this study (Eq. 

2.7). Given the market size and competitors’ utility (𝑝𝑢𝑐), market demand is determined in Eq. 2.8. 

Furthermore, the manufacturing cost (𝑐𝑚) is calculated by adding the related costs (e.g., material 

cost, operational cost, etc.) in Eq. 2.9. The non-manufacturing cost (𝑐𝑛𝑚) consisting of marketing 

and R&D expenditures is obtained in Eq. 2.10. 

In principle, all the variables in this multi-objective optimization problem can change. For 

example, market size can vary from time-to-time and is influenced by many factors such as 

economic conditions, population, social trends, marketing activities, etc.50 However, to make sure 

that the model is tractable and to emphasize the importance of government policy and corporate 

social responsibility, it is assumed that the market size is fixed. These support models are now 

discussed below: 

2.3.1. Quality Model 

      Eq. 2.6 shows the relationship of product quality to materials, processing, R&D activities, and 

PC incentives that provide extra resources for R&D to further improve product quality. Often, 
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product quality is described by qualitative attributes such as stability, effectiveness, durability, 

pleasant to consume or use, aesthetics, and ease of use. These attributes can be transformed into 

quantitative product specifications, such as physicochemical properties (e.g., viscosity, 

conductivity, etc.) or specifications regarding the product itself (e.g., product form, product 

structure, ingredient compositions, etc.). These specifications depend on the materials used in the 

product and the manufacturing processes. Most of all these technical decisions are made in the 

R&D phase. Therefore, proper R&D activities should be carried out for obtaining the proper 

materials and processes to achieve the desired quality.  

2.3.2. Utility Model 

      Eq. 2.7 shows that product utility depends on product quality, price, and some MC incentives 

which can reduce the effective price the consumer pays.48 Product utility is decided by the 

consumer’s perception and each consumer has a different perception. Thus, it is necessary to treat 

the product utility as uncertain. From the researcher’s perspective, only a fraction of factors (e.g., 

price and quality) can be observed to influence consumer purchasing behavior and there exists other 

unobserved attributes.51 Therefore, the uncertainty of product utility mainly originates from those 

unobserved attributes, instead of the observed attributes. Bearing this in mind, the utility of a 

particular product is decomposed into a representative utility (𝜐) and a random utility (𝜀) in the 

random utility theory (Eq. 2.12a).52 

𝑝𝑢 = 𝜐 + 𝜀           (2.12a) 

Here, 𝜐 is an average value of product utility taken over all consumers and is a function of product 

quality, price, and MC incentives. By following the example from Train,51 Eq. 2.12b expresses a 

simple linear expression of 𝜐 but it can be replaced by any other appropriate relationships. 

𝜐 = 𝑎𝜐 + 𝑏𝜐 ∙ 𝑞 − 𝑐𝜐 ∙ 𝑝𝑟 + 𝑑𝜐 ∙ 𝐼𝐶𝑀𝐶        (2.12b) 
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where 𝑎𝜐, 𝑏𝜐, 𝑐𝜐, and 𝑑𝜐 are utility coefficients that can be determined through fitting of historical 

sales data from market reports. For a completely new product without historical sales data, 

consumer preferences have to be obtained through market survey to determine the utility 

coefficients. This approach has been investigated by Smith and Ierapepritou.23 𝜀 represents the 

deviation of a particular consumer’s utility from the average value. Considering its random nature, 

𝜀 is described by a probability density function, 𝑔(𝜀), such as that given in Eq. 2.12c. This 

distribution was proposed by McFadden53 to derive the easily applicable consumer demand model: 

the logit model. Integration of 𝑔(𝜀) gives the cumulative distribution function, 𝐺(𝜀), in Eq. 2.12d. 

𝑔(𝜀) = 𝑒−𝜀𝑒−𝑒−𝜀
          (2.12c) 

𝐺(𝜀) = ∫ 𝑔(𝜀)𝑑𝜀 = 𝑒−𝑒−𝜀𝜀

−∞
        (2.12d) 

2.3.3. Demand Model 

      Eq. 2.8 shows the dependence of product demand on product utility, utilities of competitors’ 

products, marketing activities, market size, and certain MC incentives. Many demand models have 

been proposed in the literature.11,51 One of the most used demand model is the logit model which 

calculates the likelihood that a consumer buys a certain product or not. The model is derived based 

on the analysis of an individual’s purchasing behavior and the statistical data of population 

behavior. The detailed derivation is shown below. First, the probability 𝑃𝑎 that a consumer buys 

the product a instead of competing products such as product c is formulated as follows:  

𝑃𝑎 = 𝑃(𝑝𝑢𝑎 > 𝑝𝑢𝑐, ∀𝑐) = 𝑃(𝜀𝑐 < 𝜀𝑎 + 𝜐𝑎 − 𝜐𝑐 , ∀𝑐)     (2.13) 

where 𝜐𝑎 and 𝜐𝑐 can be calculated by Eq.2.12b. Assuming that 𝜀 follows the distribution expressed 

in Eq. 2.12c and that each consumer has the same distribution for 𝜀, the probability 𝑃𝑎 can be 

calculated by substituting (𝜀𝑎 + 𝑣𝑎 − 𝑣𝑐) into Eq. 2.12d, 
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𝑃𝑎(𝜀𝑎) = ∏ 𝑒−𝑒−(𝜀𝑎+𝜐𝑎−𝜐𝑐)

𝑐         (2.14a) 

Since 𝜀𝑎 is a random distribution, 𝑃𝑎 is equal to the integral over all values of 𝜀𝑎 (namely Eq. 2.12c).     

𝑃𝑎 = ∫ (∏ 𝑒−𝑒−(𝜀𝑎+𝜐𝑎−𝜐𝑐)

𝑐 ) ∙ 𝑔(𝜀𝑎)𝑑𝜀𝑎
∞

−∞
       (2.14b) 

Finally, the solution for 𝑃𝑎 is independent of 𝜀𝑎 as shown below51  

𝑃𝑎 =
𝑒𝜐𝑎

𝑒𝜐𝑎+∑ 𝑒𝜐𝑐𝑐
          (2.15) 

The market demand for product 𝑎 is the product of 𝑃𝑎 and market size. As stated before, marketing 

activities and the corresponding market size are considered to be fixed here. In conclusion, as 

indicated in Eq. 2.12b, the representative utility 𝜐𝑎 and 𝜐𝑐 depend on quality and price and thus 

demand is also a function of product quality, price, and market size.  

𝑑 =
𝑒𝜐𝑎

𝑒𝜐𝑎+∑ 𝑒𝜐𝑐𝑐
∙ 𝑌          (2.16) 

2.3.4. Cost Model 

      Manufacturing costs consist of material cost, processing cost, labor cost, and other costs such 

as rent, and utilities. As shown in Eq. 2.9, government regulations and PC incentives can also affect 

manufacturing costs. The nonmanufacturing costs which include marketing and R&D expenses are 

influenced by marketing strategies, such as advertisement media and expenditure, and R&D 

activities (Eq. 2.10). Many PC and MC incentives can be exploited to reduce nonmanufacturing 

costs. For instance, an R&D grant from the government can help pay for R&D costs while free 

promotions contribute to a reduction in marketing cost. 

2.3.5. Objective Function 

      Two objectives are considered in this study. The first is maximization of profit. This is 

quantified by the NPV calculated in capital budgeting, 
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𝑁𝑃𝑉 = ∑
𝑃𝐶𝐹𝑗

(1+𝑅)𝑗
𝑚
𝑗=−𝑛          (2.17) 

where 𝑅, 𝑛, and 𝑚 represent the discount rate, the number of years for product design and facility 

construction, and the number of years of factory life, respectively. 𝑃𝐶𝐹𝑗 is the project cash flow in 

the 𝑗th year: 

𝑃𝐶𝐹𝑗 = {
−𝑇𝐷𝐶𝑗 − 𝑇𝐶𝐼𝑗                                                                                              𝑗 ≤ 0

(𝑝𝑟𝑗 − 𝑐𝑚,𝑗 − 𝑐𝑛𝑚,𝑗) ∙ 𝑑𝑗 ∙ (1 − 𝑡𝑎𝑥) + 𝑡𝑎𝑥 ∙ 𝐷𝑒𝑗 − ∆𝑁𝑊𝐶𝑗             𝑗 > 0
 (2.18) 

Before manufacturing starts (𝑗 ≤ 0), 𝑃𝐶𝐹𝑗 includes total development cost (𝑇𝐷𝐶𝑗) and total capital 

investment (𝑇𝐶𝐼𝑗). After product sales starts (𝑗 > 0), 𝑃𝐶𝐹𝑗 is obtained by subtracting from the 

revenue (𝑝𝑟𝑗 ∙ 𝑑𝑗), the manufacturing cost (𝑐𝑚,𝑗 ∙ 𝑑𝑗), nonmanufacturing cost (𝑐𝑛𝑚,𝑗 ∙ 𝑑𝑗), tax after 

adjusting for depreciation, and the increase in net working capital (∆𝑁𝑊𝐶𝑗). 𝐷𝑒𝑗 is the capital 

depreciation at year j. 

      The second objective is CSR that includes donation to charities, reduction in greenhouse gas 

emission, potential of damage to ozone, job creation, employee training, and so on. In this study, 

CSR is quantified as a composite social index (SI), a weighted sum of various normalized indicators 

of environmental and social performance.54 

𝑆𝐼 = ∑ 𝑤𝑠 ∙ 𝐼𝑠
𝑁

𝑠           (2.19) 

𝐼𝑠
𝑁 =

𝐼𝑠

𝐼𝑠
𝐵           (2.20) 

where 𝑤𝑠 is the weighting factor for the sth normalized indicator 𝐼𝑠
𝑁. 𝐼𝑠 and 𝐼𝑠

𝐵 are the values of the 

sth indicator and the corresponding benchmark, respectively. Note that as many indicators as 

necessary can be included in the composite index.  

      Benchmarks represent the performance of other companies, or government requirements. 

Indicators may account for positive or negative impacts on SI. For instance, for achieving a large 
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SI, energy consumption should be reduced while accrued jobs are to be increased. Thus, for these 

indicators having positive impacts, the corresponding weighting factors are numerically positive 

while others are negative. Irrespective of the different impacts of indicators, 𝐼𝑠
𝑁 takes on a positive 

value.  

The weighting factor representing the importance of an indicator can be obtained from expert 

opinions, survey, and communication with policymakers while the indicators themselves can be 

selected from the Global Reporting Initiatives.55 The indicators that are considered for CSR include 

materials consumption, energy consumption, total water withdrawal, reduction of greenhouse gas 

(GHG) emissions, total number of employee hired, average hours of training, benefits provided to 

full time employees, etc. The selected indicators are in turn quantified by different methods such 

as life cycle assessment (LCA).56-58 Normally, the availability of data and the precision requirement 

determine which method should be selected.  

      Two caveats should be pointed out regarding the use of a composite index in Eq. 2.19. One is 

whether or not the use of a composite index is acceptable. The pros and cons of using a composite 

index has already been discussed in detail.54 For instance, a poorly constructed composite index 

may send misleading messages. However, the obvious advantage is that it can succinctly represent 

complex, multi-dimensional issues with a single metric. Despite their imperfection, complex 

indices are widely used to support decision-making in many fields such as corporate social 

responsibility with the Social Index,59,60 environment with the Environmental Performance Index61 

and the Eco-indicator 99,62 economy with the Composite Leading Indicators,63 social science with 

the Human Development Index,64 etc. Another point of contention is how the weighting factors 

should be determined. Clearly, different weighting factors in Eq. 2.19 can lead to different values 

of the social index and thus different decisions. In general, while it is straightforward to assign a 
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value to each of the weighting factors, it is difficult to fix them with certainty and consensus since 

each decision maker may have a different view of the relative importance of the various indicators. 

2.3.6. Solution Method 

      For multi-objective optimization, various methods have been employed to generate the Pareto-

optimality such as weighted sum method, 𝜀-constraint approach, and genetic algorithm.65 Due to 

its ease of use, the 𝜀-constraint approach is used here. The basic idea is to convert one objective 

function into an inequality constraint and then perform multiple single objective optimization. 

When NPV is considered as the primary objective, SI is transformed into constraints. The solution 

procedure is as follows.  (1) Maximize NPV without the consideration of SI to determine the lower 

bound of SI. (2) Maximize SI to get its upper bound. (3) Fix a series of 𝜀 to divide the range of 

lower and upper bounds into several identical intervals (e.g., 20 intervals in this study). (4) Add a 

series of constraints 𝑆𝐼 ≥ 𝜀 to the model and maximize NPV to get the points for the Pareto front 

as shown below. 

max     𝑁𝑃𝑉          (2.21) 

s.t.  Eq. (2.2-2.11)  

      𝑆𝐼 ≥ 𝜀           (2.22) 

2.4.Case Study – the Solar Photovoltaic Industry 

In this section, decision making at a monocrystalline silicon PV module company is discussed 

to highlight the application of the multi-objective optimization framework. At present, silicon-

based PV accounts for over 85% of market share because of its high efficiency and long lifespan. 

Since PV has been recognized to be one of the key renewable energies, it has received a great deal 

of support from governments around the world. Table 2.4 lists selected PV incentive programs in 

different economies. For example, the Chinese government has implemented a national feed-in 
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tariff (FIT) since 2011. Under this scheme, fixed tariffs are offered to households for generating 

electricity from PV for a long period of time. From the official website, we can find that the tariff 

rate (𝑆𝐹) is set by the Chinese government to be 0.15 $/kWh and the timespan 𝑇𝐹 is 20 years.43 

Note that if this case study will be expanded to another country such as Germany, similar data for 

the years 2004-2014 in Germany can be found in reference a3 in Table A2.1. 

Table 2.4 PV related incentive programs in different countries 

Country PV Incentive programs 

Australia Feed-in tariff, subsidies for large-scale solar power stations 

Canada Feed-in tariff, subsidies for taxation, and IP protection 

China R&D grants, interest subsidies, feed-in tariff 

France Feed-in tariff, tax exemption, green loans 

Germany Feed-in tariff, tax exemption 

Spain Feed-in tariff 

United States renewable portfolio standard, production tax credit 
 

Consider a firm that plans to invest up to 300 M$ to manufacture silicon-based PV modules. 

The money should cover capital investment and net working capital. To focus on the variations of 

business decision making, the manufacturing process is assumed to be sufficiently mature and is 

fixed. Therefore, PV quality and manufacturing cost are fixed as well. The company decision 

makers must decide whether the project should proceed and how much money should be invested. 

If the project moves forward, several business decisions have to be made: PV module price (𝑝𝑟), 

the percentage of wastewater to be reused (𝑊𝑅), salary ratio (𝑆𝐴𝑅), and whether to take advantage 

of the government’s R&D and promotion incentive schemes. These design variables influence both 

profit and CSR. All the input parameters as well as their sources are given in Table 2.5.  
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Table 2.5 Input data in the case study 

Parameter Symbol Value Source 

PV module efficiency  𝜂 14.8% 66 

PV module lifespan 𝑇 25 years 66 

Annual solar radiation 𝑆𝑅 1360 kWh/(m2∙year) 67 

Performance ratio 𝜆 0.85 68 

Degradation rate 𝛿 0.005 68 

Operational cost of PV 𝑂𝑡 0 $/Wp 68 

Consumer discount rate 𝑅𝑐 0.07 68 

FIT rate in China  𝑆𝐹 0.15 $/kWh 43 

FIT timespan  𝑇𝐹 20 years 43 

Production safety factor  𝑓𝑝𝑐   1.2 assumed 

Number of years for factory life 𝑚 5 years assumed 

Number of years for product design and 

facility construction 
n 1 year assumed 

Percentage of capital depreciation  𝐷𝑒 0.2 assumed 

Price of balance of systems  𝑝𝑏𝑜𝑠 0.38 $/Wp 69 

Installation cost 𝑝𝑖𝑡 0.30 $/Wp 69 

Utility parameter 𝐴𝑃𝑉 0 $/kWh regressed 

Utility parameter 𝐴𝐸  6.9 $/kWh regressed 

Utility parameter 𝐵𝑃𝑉 31 regressed 

Utility parameter 𝐵𝐸 31 regressed 

Diffusion demand parameter  𝛾 0.4 regressed 

Electricity grid price 𝑃𝑒 0.1 $/kWh assumed 

Market size 𝑌 10 GWp/year assumed 

Material cost 𝑐𝑚𝑎𝑡 0.583 $/Wp 66 

Utility cost  𝑐𝑢𝑡 0.073 $/Wp 66 

Capital cost of a reference facility 𝑐𝑟𝑒𝑓 0.875 $/Wp 70 

Production capacity of a reference facility  𝑃𝐶𝑟𝑒𝑓 395 MWp 70 

PV capital scaling factor  𝑏 -0.18 71 

Total volume of wastewater 𝑉𝑤𝑡 0.00233 m3 72 

Cost for recycling 1 m3 wastewater  𝑓𝑤𝑡 0.6 $/m3 73 

Minimum wage in PV industry 𝑊𝐺𝑚𝑖𝑛 8000 $/year/people 66 

Number of employees required 𝑓𝑒 2.4 people/MWp/year 66 

The amount of CO2 released by CFPP 𝑓𝑐𝑜2
 0.877 kgCO2/kWh 74 

Company discount rate 𝑅 0.05 assumed 
 

2.4.1. Quality Model 

The quality of a PV module is characterized by its lifespan (𝑇) and efficiency (𝜂). Since the 

materials and manufacturing processes have been identified, 𝑇 and 𝜂 are set at 25 years and 

14.8%,66 respectively. 𝑇 determines the total amount of electricity generated throughout the entire 
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product life. 𝜂 determines the annual electricity output per square meter in a given year 𝑡 (𝐸𝑂𝑡 in 

kWh/(m2∙year)). 𝐸𝑂𝑡 is equal to the solar radiation multiplied by the module efficiency that 

decreases over time because of energy loss and PV degradation.  

𝐸𝑂𝑡 = 𝑆𝑅 ∙ 𝜂 ∙ 𝜆 ∙ (1 − 𝛿)𝑡,    𝑡 = 1, 2, … , 𝑇      (2.23) 

where 𝑆𝑅, 𝜆, and 𝛿 are the annual solar radiation (in kWh/(m2∙year)), performance ratio, and 

degradation rate, respectively. The performance ratio 𝜆 accounts for the energy loss due to 

temperature variation, contamination, transmission, and so on. Note that although electricity output 

is expressed on a square meter basis, PV is sold on a peak watt (Wp) basis. Thus, the following 

equation is used to convert 𝐸𝑂𝑡 to 𝐸𝑡 (in kWh/(Wp∙year)). 

𝐸𝑡 =
𝐸𝑂𝑡

1000×𝜂
=

𝑆𝑅∙𝜆∙(1−𝛿)𝑡

1000
        (2.24) 

where 𝐸𝑡 is the annual electricity output per peak watt in a given year 𝑡 and the denominator 

(1000 × 𝜂) accounts for the number of peak watt for one square meter of PV module.  

2.4.2. Utility Model 

Instead of the general utility model in Eq. 2.12b, the following relationship for consumer 

satisfaction 𝜐 is assumed,  

𝜐 = 𝐴𝑃𝑉 − 𝐵𝑃𝑉 ∙ 𝐿𝐶𝑂𝐸         (2.25) 

Here, 𝐴𝑃𝑉 and 𝐵𝑃𝑉 are the utility coefficients. 𝐿𝐶𝑂𝐸, the levelized cost of electricity, is the ratio 

of the net cost after subtracting the tariffs received for the electricity produced over the lifetime of 

the module and accounting for the time value of money.68 In this case study, the utility coefficients 

𝐴𝑃𝑉 and 𝐵𝑃𝑉 as well as the parameters used in the following demand model are regressed by using 

historical LCOE and PV installation capacity data from 2010 to 2015 in Mainland China.67,75-77 The 
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details of the regression processes are described in Appendix B. Moreover, the lower the LCOE is, 

the more satisfied the consumer is.  

𝐿𝐶𝑂𝐸 =
𝐶𝐼0+∑

(𝑂𝑡+𝑀𝑡)

(1+𝑅𝑐)𝑡
𝑇
𝑡=0 −∑

𝐸𝑡∙𝑆𝐹
(1+𝑅𝑐)𝑡

𝑇𝐹
𝑡=0

∑
𝐸𝑡

(1+𝑅𝑐)𝑡
𝑇
𝑡=0

       (2.26) 

𝐶𝐼0 = 𝑝𝑟 + 𝑝𝑏𝑜𝑠 + 𝑝𝑖𝑡         (2.27) 

𝑀𝑡 = 0.005 × 𝐶𝐼0          (2.28) 

Here, 𝐶𝐼0 is the consumer’s initial investment which is the sum of the PV module price (𝑝𝑟 in 

$/Wp), price for the balance of system (𝑝𝑏𝑜𝑠 in $/Wp), and installation cost (𝑝𝑖𝑡 in $/Wp). Here, 𝑝𝑟 

is assumed to be bounded between 1 and 2.5 $/Wp to ensure the optimization problem reasonable. 

𝑂𝑡 and 𝑀𝑡 are the annual operational and maintenance cost, respectively. Since PV uses free 

sunlight, no fuel cost is considered. The summation of 𝑂𝑡 and 𝑀𝑡 is calculated as 0.5% of the initial 

investment. 𝑇𝐹, 𝑆𝐹, and 𝑅𝑐 are the FIT duration, FIT rate, and consumer discount rate, respectively.  

2.4.3. Demand Model 

van Benthem et al.70 proposed the following equation that is related to the logit model for 

calculating the market demand for PV.  

𝑑𝑗 =
𝑒𝜐  

eυ+𝑒𝜐𝐸
∙ 𝑌 + 𝑑𝑓𝑗                  𝑗 = 1, … , 𝑚      (2.29) 

The first term on the RHS calculates the demand for PV and is the same as that in Eq. 2.16. The 

utility for PV (𝜐) and that for electricity from the grid (𝜐𝐸) are calculated using Eq. 2.25 and Eq. 

2.30, respectively.  

𝜐𝐸 = 𝐴𝐸 − 𝐵𝐸 ∙ 𝑃𝑒           (2.30) 

𝑃𝑒 is the grid electricity price. 𝐴𝐸  and 𝐵𝐸 are utility coefficients. The second term is the diffusion 

function that accounts for the adoption of PV due to contacts between existing and potential 
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consumers. The probability of increasing the adoption is proportional to the product of the fraction 

of existing consumers and fraction of potential consumers as shown below.  

𝑑𝑓𝑗 = 𝛾 ∙ 𝑑𝑗−1 ∙ (1 −
𝑑𝑗−1

𝑌
)       𝑗 = 1, … , 𝑚       (2.31) 

The parameter 𝛾 indicates the magnitude of diffusion. Note that at year 𝑗 = 1, 𝑑0 is set to 0 Wp. 

The utility coefficients (𝐴𝐸  and 𝐵𝐸), 𝛾, and 𝑌 are regressed in Appendix B. 

2.4.4. Cost Model 

Goodrich et al.66  reported the cost structure of silicon PV modules in China. The manufacturing 

cost (𝑐𝑚) consists of material cost (𝑐𝑚𝑎𝑡), utility cost (𝑐𝑢𝑡), capital cost (𝑐𝑐𝑎𝑝), maintenance cost 

(𝑐𝑚𝑡), cost for wastewater reuse (𝑐𝑤𝑡), and labor cost (𝑐𝑙𝑎) as given in Eq. 2.32. Note that all the 

costs are on a peak watt unit ($/Wp) basis.  

𝑐𝑚 = 𝑐𝑚𝑎𝑡 + 𝑐𝑢𝑡 + 𝑐𝑐𝑎𝑝 + 𝑐𝑚𝑡 + 𝑐𝑤𝑡 + 𝑐𝑙𝑎      (2.32) 

𝑐𝑐𝑎𝑝 = 𝑐𝑟𝑒𝑓 ∙ (
𝑃𝐶

𝑃𝐶𝑟𝑒𝑓
)

𝑏

         (2.33) 

𝑃𝐶 = 𝑓𝑝𝑐

∑ 𝑑𝑗
𝑚
𝑗=1

𝑚
          (2.34) 

𝑐𝑚𝑡 = 0.03 × 𝑐𝑐𝑎𝑝         (2.35) 

𝑐𝑤𝑡 = 𝑓𝑤𝑡 ∙ 𝑉𝑤𝑡 ∙ 𝑊𝑅         (2.36) 

𝑐𝑙𝑎 = 𝑊𝐺𝑚𝑖𝑛 ∙ 𝑓𝑒 ∙ 𝑆𝐴𝑅         (2.37) 

𝑐𝑚𝑎𝑡 accounts for the costs of silicon feed stock, metal paste, wires, and so forth and is set to be 

0.583 $/Wp. The cost of utilities (𝑐𝑢𝑡) is 0.073 $/Wp.66 Eq. 2.35 shows the typical power law 

correlation for capital cost. 𝑐𝑟𝑒𝑓 and 𝑃𝐶𝑟𝑒𝑓 are the capital cost and production capacity of a 

reference facility, respectively. The scaling factor 𝑏 is set to be that of semi-conductor industry 

since they have similar production processes.71 The production capacity, 𝑃𝐶, is determined by the 
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estimated market demand as given in Eq. 2.34. The safety factor 𝑓𝑝𝑐 which is used to ensure 

sufficient capacity is assumed to be 1.2. 𝑐𝑚𝑡 is assumed to be 3% of the capital cost. Moreover, the 

volume of wastewater (𝑉𝑤𝑡) generated by producing 1 Wp PV module is estimated to be 

0.00233m3. The main pollutants include hydrogen chloride and fluoride-based chemicals. To reuse 

the wastewater, in addition to chemical (e.g., neutralization and precipitation) and biotreatment, 

ultrafiltration and reverse osmosis are needed to further purify the water so that certain purity 

criteria can be met. Note that although other treatment process can be employed, reverse osmosis 

is the widely used process in the solar photovoltaic industry. Thus, only this process is considered 

for simplicity. The cost of treating 1 m3 wastewater in the reverse osmosis process (𝑓𝑤𝑡) is equal to 

0.6 $ and 𝑊𝑅 is the fraction of wastewater treated by reverse osmosis. The cost of treating the 

fraction (1 − 𝑊𝑅) of wastewater is neglected in comparison with the cost of treatment by reverse 

osmosis. Finally, the labor cost 𝑐𝑙𝑎 is shown in Eq. 2.37. It equals to the product of the average 

salary of a full-time employee and the number of employees required for production (𝑓𝑒). The 

average salary is equal to the salary ratio (𝑆𝐴𝑅) multiplied by the minimum wage in this group of 

workers doing similar work (𝑊𝐺𝑚𝑖𝑛). It is assumed that the maximum wage for these workers is 

50% larger than 𝑊𝐺𝑚𝑖𝑛. Thus, 𝑆𝐴𝑅 is bounded between 1 and 1.5. 

2.4.5. Objective Function 

Two objective functions are maximized: NPV and SI. NPV is calculated using Eq. 2.17-2.18, 

with the net working capital assumed to be 10% of the capital investment. For SI, two indicators 

are selected from the environmental section of the GRI framework and two from the social section. 

The extent of CO2 mitigation (𝐼1) is chosen to be the first indicator. As given in Eq. 2.38, 𝐼1is the 

product of the amount of electricity generated by all the PV systems within their lifetime and the 

amount of CO2 released by generating 1 kWh electricity from coal fire power plant (CFPP). As 
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given in Eq. 2.39, the second indicator (𝐼2) is the total volume of wastewater that is reused by the 

company. An important social factor is the number of accrued jobs (𝐼3), which is proportional to 

the production capacity (Eq. 2.40). Lastly, 𝑆𝐴𝑅 is selected as the fourth indicator (𝐼4) which 

represents the benefit that a single employee can receive. The weighting factors and benchmarks 

for calculating SI are listed in Table 2.6. Note that a composite index with 4 indicators and assumed 

weighting factors is used to demonstrate how corporate social responsibility can be explicitly 

quantified. However, a separate and thorough study including interviews with experts is needed to 

identify a complex index that can truly reflect the consensus of all the stakeholders in the PV 

industry. This task is beyond the scope of this study. 

𝐼1 = 𝑓𝑐𝑜2
∙ ∑ 𝐸𝑡

𝑇
𝑡=0 ∙ ∑ 𝑑𝑗

𝑚
𝑗=1         (2.38) 

𝐼2 = 𝑉𝑤𝑡 ∙ 𝑊𝑅 ∙ ∑ 𝑑𝑗
𝑚
𝑗=1          (2.39) 

𝐼3 = 𝑓𝑒 ∙ 𝑃𝐶          (2.40) 

𝐼4 = 𝑆𝐴𝑅           (2.41) 

Table 2.6 Benchmarks and weighting factors for calculating social index 

Selected Indicators Benchmark Weighting 

Overall extent of CO2 mitigation (𝐼1) 1×107 ton CO2 0.35 

Total volume of reused water (𝐼2) 5×106 m3 0.15 

Total number of accrued employees (𝐼3) 500 people 0.25 

Ratio of average salary to minimum wage (𝐼4) 1.25 0.25 

 

      Again, the objective function in this case study is the maximization of NPV calculated using 

Eq. 2.17-2.18 and SI calculated using Eq. 2.19-2.20, 2.22, and 2.39-2.41. The model consists of:  

 Eq. 2.23-2.24 for the quality of the PV module 

 Eq. 2.25-2.28 for consumer satisfaction 
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 Eq. 2.29-2.31 for product demand  

 Eq. 2.32-2.37 for product cost 

The following variables are fixed in these equations: 𝐸𝑂𝑡, 𝐸𝑡, 𝜐𝐸, 𝜂, 𝑇, 𝑆𝑅, 𝜆, 𝛿, 𝑂𝑡, 𝑅𝑐, 𝑆𝐹, 𝑇𝐹, 

𝑓𝑝𝑐, 𝑚, 𝑛, 𝐷𝑒, 𝑝𝑏𝑜𝑠, 𝑝𝑖𝑡, 𝐴𝑃𝑉, 𝐴𝐸 , 𝐵𝑃𝑉, 𝐵𝐸, 𝛾, 𝑃𝑒, 𝑌, 𝑐𝑚𝑎𝑡, 𝑐𝑢𝑡, 𝑐𝑟𝑒𝑓, 𝑃𝐶𝑟𝑒𝑓, 𝑏, 𝑉𝑤𝑡, 𝑓𝑤𝑡, 𝑊𝐺𝑚𝑖𝑛, 𝑓𝑒, 

𝑓𝑐𝑜2
, and 𝑅. Note that 𝐸𝑂𝑡, 𝐸𝑡, and 𝜐𝐸 are fixed by using Eq. 2.23, Eq. 2.24, and Eq. 2.30, 

respectively. The values of the fixed variables are listed in Table 2.5. The variables that need to be 

optimized are:  𝐿𝐶𝑂𝐸, 𝜐, 𝐶𝐼0, 𝑝𝑟, 𝑀𝑡, 𝑑𝑗, 𝑑𝑓𝑗, 𝑐𝑚, 𝑐𝑐𝑎𝑝, 𝑐𝑚𝑡, 𝑐𝑤𝑡, 𝑐𝑙𝑎, 𝑃𝐶, 𝑊𝑅, and 𝑆𝐴𝑅.  

2.4.6. Results 

The optimization problems are solved in GAMS 24.5.5 with the solver CONOPT. NPV is 

treated as the primary objective function while SI is converted as 𝜀-constraints. In these 

calculations, 20 equal intervals are used between the lower and upper bounds of SI. Four scenarios 

are discussed below to understand how business decisions are made.  

2.4.6.1.Scenario 1: A 20-year FIT 

In Scenario 1, the base case, the government provides FIT at a fixed rate for 20 years. All the 

input data are given in Table 2.5. The curve on the right in Figure 2.4 shows the Pareto front with 

FIT set at 0.15 $/kWh and the trade-off between NPV and SI. The solutions under the curve are 

suboptimal and any solution above the curve is infeasible. As SI increases from 1.12 to 2.71, NPV 

is reduced from 153 M$ to 18 M$. If FIT is not available (𝑆𝐹 = 0), we get the curve on the bottom 

left. It can be seen that its objective values (NPV and SI) are much worse than the curve with FIT, 

signifying the importance of FIT to open up the PV market.  
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Figure 2.4 Pareto-front obtained by maximizing NPV and SI in Scenario 1 

At the Pareto front, each point corresponds to different values of the design variables. Figure 

2.5 shows how these values change. From point 1 to 21, the TCI increases from 194 M$ to 405 

M$. Note that the total investment at point 9 consisting of 268 M$ TCI and 26.8 M$ net working 

capital is slightly less than 300 M$. Recall that only 300 M$ is budgeted for this investment. Thus, 

point 10 and above are not affordable. Additionally, both 𝑆𝐴𝑅 and 𝑊𝑅 reach their upper bounds 

before point 9. This is because labor cost and cost for wastewater reuse only account for small 

portions of the total manufacturing cost. As price decreases from 1.40 $/Wp to 1 $/Wp, NPV 

decreases while SI increases.  

Since all the points, 1-21, along the Pareto front are equivalently optimal, the decision makers 

can choose any point from the curve to implement the project. Wang and Rangaiah78 compared ten 

mathematical approaches for selecting one solution out of the Pareto-optimality. For instance, 

based on the LINMAP approach the point with the shortest distance to the positive ideal point; i.e. 

the point with best objective values, can be selected. In our case, the objective values of the positive 

ideal point are 153 M$ and 2.71. Then, it is easy to conclude that point 13 that is the closest to the 

positive ideal point should be selected. However, the required capital investment at point 13 is 
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larger than the company’s investment budget of 300 M$. As mentioned, only points 1-9 in Figure 

2.5 are affordable. Here, point 9 is selected as the ‘base case’ for further comparison. 

 

Figure 2.5 Variation of design variables along the Pareto-front in Scenario 1 

2.4.6.2.Scenario 2: Regulation on wastewater treatment 

In Scenario 2, it is assumed that all wastewater discharged into the environment must be treated 

by the reverse osmosis plant. With this additional constraint, the new Pareto front (the curve with 

stars) is shown in Figure 2.6. The two curves (‘star’ and ‘circle’) coincide, except for the first two 

points at the top left. The other points coincide because these points have the same design variables 

(as shown by point 3-21 in Figure 2.5). Moreover, as SI increases from point 1 to point 21 in Figure 

2.5, WR reaches the upper bound at point 3. Since the wastewater treatment cost is relatively small 

compared with other costs (e.g., salary costs, material costs, etc.), it is fine to increase WR for 
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achieving a higher SI. In the base case (i.e., point 9 in Figure 2.5), all wastewater is reused (i.e., 

𝑊𝑅 = 1). Thus, the company already fulfills the regulation requirement. 

 

Figure 2.6 Pareto-front obtained with FIT and regulation in Scenario 2 

2.4.6.3.Scenario 3: Reduction in tariff after two years 

As shown in the reference a3 in Table A2.1, the German government reduced the tariff rate over 

time. Assume that this situation occurs in China as well. In Scenario 3, it is assumed that 𝑆𝐹 is 

reduced from 0.15 to 0.14 $/kWh after two years to study the influence of FIT variations. Clearly, 

with the same module price, 𝐿𝐶𝑂𝐸 will increase suppressing market demand and NPV. Table 2.7 

shows the potential impact, which depends on how the company reacts to the reduced tariff. If the 

company insists on having the same SI (i.e., 𝑊𝑅 and 𝑆𝐴𝑅 are kept the same), as shown in the 

second column labelled as Case B, the company must reduce the module price. NPV decreases by 

37% from 130 M$ to 82 M$.  

In order to counteract the decrease in FIT, the company can launch R&D projects to reduce 

product cost within the first two years. The third column labelled Case C in Table 2.7 shows the 

outcome if the costs can be reduced by 16% after the first two years. Even though the price goes 
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down, NPV is reduced only by 3 M$ while SI remains the same. Figure 2.7 shows the cumulative 

present value of cash flow in the three cases. The curves of the Base Case and Case C almost 

overlap. This means that the 16% cost reduction can compensate the negative impact of the reduced 

FIT. Comparing the Base Case and Case B, the payback time in Case C is around 4 years while it  

Table 2.7 The optimization results in Scenario 3 

 Base case Case B# Case C+ 

𝑝𝑟 ($/Wp) 1.22 1.10* 1.10* 

𝑊𝑅 1 1 1 

𝑆𝐴𝑅  1.5 1.5 1.5 

PC (MWp/year) 291 291 291 

Number of employees 698 698 698 

NPV (M$) 130 82 127 

SI 1.76 1.76 1.76 
 

is 3.5 years in the base case. Therefore, R&D must continue to avoid the decline of project 

profitability as FIT decreases. Note that since the expenditure for additional R&D activities has not 

been considered, these are the most optimistic results.  

 

Figure 2.7. Cumulative present value of cash flow of the three cases in Scenario 3 
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2.4.6.4.Scenario 4: R&D funding and product promotion program 

As shown in reference a5 in Table A2.2, the Hong Kong government provides funding to the 

companies for conducing R&D. In addition, support is offered to promote brand and expand 

market. Thus, in the last scenario, the local government presumably launches another two incentive 

programs. The first one offers 10M$ R&D funding for reducing manufacturing cost. The other one 

provides 5M$ to expand the market. In return, the company must provide an extra 100 jobs to local 

residents after receiving the benefits for each incentive. Note that, as shown in Figure 2.7, the firm 

cannot afford R&D and marketing at year 0 due to the limited investment budget of 300 M$.  

 

Figure 2.8 The Pareto-fronts obtained in Scenario 4 

Let us consider that the firm receives only the R&D funding and that this leads to a 7% cost 

reduction after the first two years. Figure 2.8 shows the Pareto-front (the curve with diamonds) for 

this case, which is better than the base case in both NPV and SI. Table 2.8 lists the optimization 

results of point D. Comparing with the Base Case, an extra 119 jobs can be created for locals which 

fulfills the government’s requirement (100 jobs) and NPV remains the same at 130 M$. In other 

words, the company becomes more socially responsible without sacrificing NPV. This can be 
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achieved because the product price is reduced to 1.15 $/Wp and the production capacity (and 

market demand) increases up to 340 MWp/year. Since the number of employees is proportional to 

the production capacity, extra jobs are created. If the company only executes the promotion 

program and expands the market size by 10%, we get the Pareto front which basically overlaps 

with the one with R&D program only (Figure 2.8).  

Figure 2.8 also shows the Pareto-front (curve with squares) when the company executes both 

programs and achieve the same outcomes in cost reduction and market expansion. If NPV remains 

at 130 M$, we get point E whose results are listed in Table 2.8. The company provides an extra 

254 jobs as compared with the Base Case and SI increases up to 2.29. Note that the increase in jobs 

is more than the minimum requirement of 200 and is more than twice that from only the R&D 

program (i.e., 119 jobs in point D) because of synergistic effect. If the number of employees is 

fixed at 898, we get point F, which provides an increased NPV to 140 M$.  

Table 2.8 The optimization results in Scenario 4 

 Base Case Point D Point E Point F 

𝑝𝑟 ($/Wp) 1.22 1.15 1.12 1.15 

𝑊𝑅 1 1 1 1 

𝑆𝐴𝑅  1.5 1.5 1.5 1.5 

PC (MWp/year) 290 340 393 375 

Number of employees 698 817 952 898 

NPV (M$) 130 130 130 140 

SI 1.76 2.02 2.29 2.18 
 

2.5.Conclusion 

      This chapter presents a multi-objective optimization model for decision making in chemical 

product development taking into account government policies and corporate social responsibility. 

This is the first attempt in the literature to develop such a systematic approach. Government 



www.manaraa.com

43 

 

incentives are classified based on what they try to accomplish for such a product and whether the 

incentive is a form of cash payment. Government regulations define the rules and bounds on the 

choice of materials and processes for producing the product. Company reacts to these incentives 

and regulations, and takes into account consumer preferences to design a product that offers 

maximum profit while fulfilling social responsibility. The framework is demonstrated by a PV 

module investment case study. To keep the model manageable, the materials and manufacturing 

process for the PV case study are fixed and only the business decisions are optimized. Four 

scenarios are discussed to illustrate how the decisions are made under the impact of different 

government policies. 

Additional work can be done for this chapter. A direct utility model using only quantities of 

goods as arguments is not suitable for use in this case study where solar panel is the only product. 

Instead, the models popularized by Lancaster,49 McFadden,53 and Hanemann48 are followed in this 

chapter. More complex models can be considered for the case study. It is clear that different 

weighting factors in Eq. 2.19 can lead to different values of the social index and thus different 

decisions. A more comprehensive and in-depth evaluation of the weighting factors is 

recommended. Moreover, the government-company-consumer interactions can also be considered 

from the government point of view. A government should optimally allocate the limited resources 

to achieve its objectives. This has been recognized as a bi-level optimization problem.  

This framework is part of our long-term effort to develop a Grand Product Model that considers 

most, if not all, of the important factors influencing product design. These include product 

ingredients, processing, material properties, product structure, product cost, pricing, and so on. 

Research on further expanding this framework to consider global supply chain and sustainability 

is underway. 
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2.6.Appendix A 

Table A2.1 Incentive programs in Germany 

Abbreviation Name Description 

ERPa1 European Recovery 

Program 

Venture capital funds focusing on German-based 

high-tech companies to develop new technologies 

PGa2 Public Guarantees Acts as guarantor to encourage financial institutions to 

offer loans to new companies 

FITa3 Feed-in Tariff Offers tariffs to renewable energy producers to 

accelerate investments in renewable energy 

technologies 

BAFAa4 Economic Affairs and 

Export Control 

Provides support to Germany companies to participate 

in selected fairs and oversea exhibitions 
a1: http://www.eif.org/what_we_do/resources/erp/ 
a2: https://www.gtai.de/GTAI/Navigation/EN/Invest/Investment-guide/Incentive-programs 

/public-guarantees.html 
a3: https://en.wikipedia.org/wiki/Feed-in_tariffs_in_Germany 
a4:www.bafa.de/EN/Promotion_Economic_Development_SME/promotion_economic_development_sme

_node.html 

Table A2.2 Incentive programs in Hong Kong 

Abbreviation Name Description 

ITFa5 Innovation and 

Technology Fund 

Provides funds to companies for developing new 

products and technologies in Hong Kong 

R&D centersa6 / Provides free information, consultation on product 

and technology development and networking 

opportunities 

GSPa7 General Support 

Program 

For non-R&D projects that contribute to upgrading 

Hong Kong industries as well as fostering an 

innovation culture 

BDPa8 Brand Development 

and Promotion 

Assists Hong Kong enterprises in the 

establishment, development, and promotion of 

their brands such as organizing exhibitions and 

providing free market information 
a5: http://www.itf.gov.hk/l-eng/about.asp 
a6: http://www.itc.gov.hk/en/rdcentre/rdcentre.htm 
a7: http://www.itf.gov.hk/l-eng/GSP.asp 
a8: http://www.branding.tid.gov.hk/english/support_measures/marketing.html 
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Table A2.3 Incentive programs in Singapore 

Abbreviation Name Description 

RISCa9 Research Incentive 

Scheme for Companies 

Provides government grants to develop R&D 

capabilities in strategic areas of technology 

WSQa10 Workforce Skills 

Qualifications 

Trains, develops, assesses and recognizes individuals 

for key competencies 

DTDa11 Double Tax Deduction 200% tax deduction on eligible expenses for 

supporting market expansion and investment 

development activities 

TXCa12 TradeXchange Trade enhancing infrastructures to offer an integrated 

electronic system of “work flow, submission and 

enquiry to the transportation-related agency” 
a9: https://www.edb.gov.sg/content/edb/en/why-singapore/ready-to-invest/incentives-for-businesses.html 
a10: http://www.ssg.gov.sg/wsq.html?activeAcc=1 
a11: https://www.iesingapore.gov.sg/Assistance/Global-Company-Partnership/Market-Access/Double-

Tax-Deduction 
a12: https://www.tradexchange.gov.sg/tradexchange/content/aboutradexchange.html 

Table A2.4 Incentive programs in United States 

Abbreviation Name Description 

SBIRa13 Small Business 

Innovation Research 

Provides seed funds (early-stage capital) for 

technology commercialization in the United States 

CRADAa14 Cooperative Research & 

Development Agreements 

Allows a government agency and a private 

company or university to work together on research 

and development 

CPGa15 Comprehensive 

Procurement Program 

Buys products made with recovered materials to 

ensure that the materials collected in recycling 

programs are used again in the manufacture of new 

products 

FEMPa16 Federal Energy 

Management Program 

Provides training to foster and maintain a high-

performance workforce to conduct and operate in 

an energy efficient and sustainable manner  
a13: https://sbir.nih.gov/ 
a14: https://en.wikipedia.org/wiki/Cooperative_research_and_development_agreement 
a15: https://www.epa.gov/smm/comprehensive-procurement-guideline-cpg-program 
a16: https://energy.gov/eere/femp/federal-energy-management-program-training 

 

 

 

https://energy.gov/eere/femp/federal-energy-management-program-training
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2.7.Appendix B 

The parameters, 𝐴𝑃𝑉, 𝐵𝑃𝑉, 𝐴𝐸 , 𝐵𝐸, 𝛾, and 𝑌, in the utility model and demand model are 

elaborated here. 𝐵𝑃𝑉 is assumed to be equal to 𝐵𝐸. Additionally, when LCOE is equal to the grid 

price, only 1 out of 1000 consumers presumably purchases PV. Under this assumption, the 

probability of purchasing PV can be written as: 

𝑃 =
𝑒𝐴𝑃𝑉

𝑒𝐴𝑃𝑉+𝑒𝐴𝐸
= 0.001         

Thus, if 𝐴𝑃𝑉 is presumably set to be 0 $/kWh, 𝐴𝐸  is then equal to 6.9 $/kWh. The parameters 𝐵𝑃𝑉 

(𝐵𝐸) and 𝛾 are regressed from historical LCOE data and annual installed PV capacity from 2010 to 

2015 in Mainland China using Eq. 2.25-2.31 (Table B2.1).67 

Table B2.1 Historical LCOE and installation capacity data from 2010 to 2015 in Mainland China 

 2010 2011 2012 2013 2014 2015 

LCOE ($/kWh) 0.250 0.042 0.033 0.000 -0.017 -0.033 

Installed PV (GWp) 0.5 2.5 5.0 9.5 10.6 15.1 

Grid price minus LCOE  ($/kWh) -0.15 0.058 0.067 0.100 0.117 0.133 
 

The regression results with a coefficient of determination R2 of 0.97 are listed in Table B2.2.  

Table B2.2 Regression results 

 𝐵𝑃𝑉 (𝐵𝐸) 𝛾 𝑌𝑀 (GWp/year) R2 

Value 31 0.4 20 0.97 
 

Note that the market size 𝑌𝑀 is countrywide. However, the case study assumes a firm focusing 

on the market in southern China with a market size of 10 GWp/year 
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Chapter 3: Product Design: Incorporating Make-or-buy Analysis and Supplier 

Selection 

3.1.Introduction 

The research on the design of chemical products has gradually evolved in breadth and depth. 

There exist a number of perspective articles offering different viewpoints of product design.3,5,6,79,80 

Many case-studies are available for the design of specific products. These include the design of 

personal detergent,81 biofuel blend,82 refrigerant,31 disinfectant,83,84 perfume,85,86 fuel additive,30 

paint formulation,87,88 inkjet ink29 and so on. Systematic approaches and methods include tools, 

model-based methods, rule-based methods, databases, and experiments have been developed for 

designing these products. These include chemical product design simulator,89 inversion model in 

product design,16 design based on consumer preference,23 pricing model,11,36 model accounting for 

the interrelationship among various design tasks,2 government policy and corporate social 

responsibility.90 In this chapter, we focus on make-or-buy analysis and supplier selection in product 

design. 

Figure 3.1 shows the relationship between the consumer and the company that makes and 

markets the new product as well as the relationship between the company and its suppliers. After 

conceptualizing the product based on consumer preferences, the company sources the ingredients 

from different suppliers. Some ingredients go directly into the final product while some 

intermediate ingredients are converted in-house into ingredients that go into the final product. Each 

ingredient, intermediate or final, can be purchased from suppliers with different production 

capacity, price, and quality. Therefore, suppliers must be properly selected for achieving reliable 

supply and low product cost.  
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Figure 3.1 Consumers-company & company-suppliers relationships 

Generally, make-or-buy decisions are made at the strategic and operational levels.91 Many 

approaches have been developed for systematic make-or-buy analysis, such as the transaction cost 

framework,92 analytic hierarchy process method,93 and weighted sum method.94 Similarly, supplier 

selection takes many factors into consideration. For instance, Amorim et al.,95 developed a 

stochastic mixed-integer programming model for systematic supplier selection in the food 

processing industry taking into account perishability, model parameter uncertainty, and freshness 

dependent demand. Ware et al.,96 reviewed the various issues and methods in supplier selection 

problems.  It is worth noting that the methodologies developed in the supply chain literature were 

intended for products with fixed formula, quality, price and even market demand. In other words, 

these two issues were studied only from the supply chain management perspective. In fact, make-

or-buy analysis and supplier selection are closely related to product design. However, to the best 

of our knowledge, few studies consider the two issues from the product design perspective. This 

motivates us to develop a framework where product design, make-or-buy analysis, and supplier 

selection are simultaneously considered from the systems engineering perspective. This is 

particularly important for designing new formulated products and functional products. 

The design problem we aim to solve is illustrated in Figure 3.2. The icons on the right (i.e., 

ingredients, process design, quality, consumer preference, pricing, product cost, nonmanufacturing 
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cost, and economic analysis) are adjusted from the Grand Product Design Model2 while the supply 

chain icon (on the left) is newly added. The supply chain icon contains information of the qualified 

suppliers (e.g., location, price, quality, and production capacity), purity requirements, available 

manufacturing technologies, and company resources such as initial capital budget. Starting at the 

middle, a product is conceptualized based on consumer preferences. The total market size, quality, 

and price of the competitor’s product are known. The ingredients and process are identified (top of 

figure) to provide a product with the desired quality. It is assumed that the company owns a site 

where the plants for manufacturing the final product and for converting intermediate ingredients to 

final ingredients, and warehouse are collocated. It allows the simultaneous optimization of the 

product cost that depends on ingredients and operating costs, and the product formula that satisfies 

the consumer preferences; that is, the product ingredients are not fixed in advance. However, in 

order not to handle too many details in this study, it is assumed that product distribution channels 

are fixed. In other words, the profit is optimized by choosing the ingredients, make-or-buy, 

suppliers, product price, and market share in the presence of a competing product. Since variables 

such as market size may vary with time, the year is discretized into multiple periods with a prefixed 

length (e.g., month or quarter) within which the variable is fixed. Two case studies – light duty 

liquid detergent and controlled release granular herbicide – are used to demonstrate the application 

of the proposed framework. 

3.2.Procedure for Simultaneous Product Design, Make-or-Buy Analysis, and Supplier 

Selection 

The aforementioned design problem is formulated as a collection of relationship models in Eq. 

3.1-3.8. The underlined entities are simply different types of variables. For instance, in Eq. 3.2, 𝑥 

accounting for the selected ingredients and their compositions is a vector while 𝑝𝑑 consists of  



www.manaraa.com

50 

 

 

 

Figure 3.2 Impacts of supply chain on product design activities 

process design flowsheet and equipment operating conditions. The arrows ←, instead of equal 

signs, signify the fact that the LHS variables can be determined from the RHS variables through 

model-based methods, rule-based methods, databases, tools, and experimental results. 

𝑚𝑎𝑥 𝑒           (3.1) 

Subject to 

𝑞 ← 𝑇𝑞(𝑥, 𝑝𝑑)      (Quality)   (3.2) 

𝑝𝑟𝑚𝑠 ← 𝑇𝑝𝑟𝑚𝑠(𝑞, 𝐻, 𝑌)     (Pricing)   (3.3) 

𝑥, 𝑝𝑑 ← 𝑇𝑥𝑝𝑑(𝑆𝐶)      (Supply chain)   (3.4) 

𝑐𝑚 ← 𝑇𝑚(𝑥, 𝑝𝑑, 𝑆𝐶)     (Product cost)   (3.5) 

𝑐𝑛𝑚 ← 𝑇𝑛𝑚(𝑚𝑘)      (Non-manufacturing cost) (3.6) 

𝑒 ← 𝑇𝑒(𝑝𝑟𝑚𝑠, 𝑐𝑚, 𝑐𝑛𝑚)     (Economics)   (3.7) 

𝑐𝐿 ≤ 𝑓 (𝑥, 𝑝𝑑, 𝑝𝑟𝑚𝑠, 𝑞, 𝐻, 𝑌, 𝑆𝐶, 𝑚𝑏, 𝑠𝑢, 𝑐𝑚, 𝑐𝑛𝑚, 𝑚𝑘) ≤ 𝑐𝑈 (Bounds)  (3.8) 
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The objective function is the maximization of profit (Eq. 3.1). Product quality (𝑞) is decided in 

Eq. 3.2.  Here, we consider that product quality includes qualitative product attributes and 

quantitative technical requirements. Product price (𝑝𝑟) and market share (𝑚𝑠) are determined in 

Eq. 3.3. Note that the price 𝑝𝑟 is considered as a vector because price may vary in different 

geographical regions and with demographics based on the pricing strategy36. 𝐻 captures the 

consumer preferences and 𝑌 denotes the given market sizes. Furthermore, 𝑥 and 𝑝𝑑 are influenced 

by the supply chain 𝑆𝐶 (Eq. 3.4). As the distribution channels are assumed to be fixed in this study, 

𝑆𝐶 has two components. Make-or-buy analysis (𝑚𝑏) decides whether the selected ingredients are 

made in-house or purchased externally, while supplier selection (𝑠𝑢) determines the selected 

suppliers and the corresponding order quantities. Eq. 3.5 calculates product cost (𝑐𝑚). 

Nonmanufacturing cost (𝑐𝑛𝑚) includes administrative and marketing activities (𝑚𝑘) such as 

advertising costs (Eq. 3.6). Finally, Eq. 3.7 decides the profit based on price, market share, and 

costs. Note that the above problem can be expanded by incorporating other objectives such as 

corporate social responsibility (in Chapter 2), product sustainability, etc. In that case, additional 

constraints and models are needed. 

A five-step design procedure is proposed to solve this design problem (Figure 3.3). It is derived 

from the Grand Product Design Model in Figure 3.2. At each step, heuristics and rule-based 

methods (shown on the right of Figure 3.3) are used to make decisions and to convert the 

relationships into mathematical equations (such as Eq. 3.9-3.37 below) which are then solved by 

optimizers. The procedure starts with the identification of consumer preferences through which 

design targets are decided. Then, proper ingredients and process design are generated in Step 2. 

Step 3 provides a product with the desired qualities. In Step 4, product pricing, make-or-buy 

analysis, and supplier selection are carried out. Meanwhile, product cost and nonmanufacturing 
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cost are calculated and profit is maximized. Finally, experimental verifications are conducted to 

ensure a reliable design. The specific models and equations are discussed next. 

  

Figure 3.3 Procedure for simultaneous product design, make-or-buy analysis, and supplier 

selection 

3.2.1. Step 1. Identify Consumer Preferences 

The consumer preferences 𝐻 in Eq. 3.3 that include various product attributes (e.g., stability, 

ease of spread, cleanliness) are identified through consumer survey. Generally, how consumers 

perceive the product can be quantified by the consumer preference function 𝐻, which is the 

weighted sum of the preference scores of the product attributes.  

𝐻 = ∑ 𝑤𝑛 ∙ 𝑦𝑛𝑛           (3.9)  

Step 1.

Identify consumer preferences
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• Knowledge-base and heuristics to identify 

technical requirements and design targets
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generate ingredient candidates
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• Make-or-buy analysis (Table 3.2 and Figure 3.5)

• Supplier selection (Figure 3.6-3.7)
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• Use specific models (e.g., empirical, 

statistical, and mechanistic) to select 

proper ingredients and design processes
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where 𝑤𝑛 is the weighting factor (∑ 𝑤𝑛𝑛 = 1), which is determined through consumer survey. 𝑦𝑛, 

in the range of 0-1, is the preference score of the n-th product attribute. Generally, product attributes 

can be translated into various technical requirements (𝑡𝑟) through knowledge-base and heuristics 

in the form of House of Quality25. The technical requirements include functional performance (e.g., 

dissolution time, shelf life), physicochemical properties (e.g., pH, viscosity, solubility), or product 

characteristics (e.g., particle size, form, smell). Preference scores are calculated by 

𝑦 = 𝑓(𝑡𝑟)           (3.10) 

Meanwhile, rule-based methods can be utilized to determine a set of design targets (lower bound  

𝑡𝑟𝐿 and upper bound 𝑡𝑟𝑈) on these technical requirements. For instance, the pH of hand lotion must 

be large than 4 and less than 8 so that the lotion does not harm the skin.  

𝑡𝑟𝐿 ≤  𝑡𝑟 ≤ 𝑡𝑟𝑈          (3.11) 

3.2.2. Step 2. Determine Ingredient Types and Generate Ingredient Candidates 

 

Figure 3.4 Multi-level data structure for chemical product design in different market sectors 

Eq. 3.2 shows that product quality depends on the selected ingredients and process design. To 

do so, data on potential ingredients are needed. Figure 3.4 shows a multi-level database structure 
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for designing products in different market sectors. In each sector, there are many products and each 

product consists of many ingredients to provide multiple functions. Thus, ingredients can be 

classified into different types based on their functionalities. The required ingredient types in a 

product can be identified by knowledge-base and heuristics. For instance, the typical ingredient 

types used in the agrochemical products97 and their functions are listed in Table 3.1 (2nd  and 3rd 

columns). In addition, Fung et al.,98 listed the ingredient types used in the detergents and Cheng et 

al.,15 showed the ingredient types in skin-care creams. For products in other sectors (e.g., cosmetics 

and personal care99, household and professional care100,101, paint and coating102, pharmaceutical103, 

adhesive and sealant104, ink and dye105,106, and lubricant107), the required ingredient types can be 

similarly identified. For a specific ingredient type, many chemicals can provide the necessary 

functions. Thus, potential ingredient candidates (e.g., 4th column in Table 3.1) can be generated by 

using knowledge-base, material databases (e.g., Material Project, NIST chemistry book, NIMS 

material database) or computer-aided tools89. Moreover, for each ingredient candidate, its supply 

information (e.g., the number of suppliers, purchasing prices, etc.) and manufacturing information 

(i.e., processing techniques, production capacity, capital cost, etc.) should be collected. Note that 

if an ingredient candidate cannot be purchased and manufactured in-house, it should not be 

generated for consideration. 

3.2.3. Step 3. Select Ingredients and Design Processes 

      To meet the design targets, proper ingredients as well as their concentrations should be selected 

out of the candidates identified in Step 2. Additionally, detailed process design should be 

determined. Systematic framework has been proposed to synthesize the manufacturing processes 

for selected formulated and functional products.8-10 The generic flowsheet usually consists of pre-

treatment, mixing, structure formation, post treatment, filling and packaging. Among them,  
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Table 3.1 Typical ingredients types used in the agrochemical products 

Ingredient types Functions Candidates Properties for selection 

Absorbent/carrier Offer solid medium to load liquid 

ingredients 
 Silica 

 Talc 

 Absorptive capacity 

 Hardness 

Active ingredient Provide product-specific functions 

(e.g., control pathogen or insect) 
 DDT 

 Captan 

 Functional mechanism 

 Biological property 

Antifreeze Lower freezing point of a liquid  Ethylene glycol 

 Propylene glycol 

 Efficacy  

 Solubility 

Antifoaming Prevent formation of foam and 

break the foam already formed 
 Polysiloxanes 

 Silicone 

 Efficacy 

 Solubility 

Binder Bind solid particles together and 

to substrates 
 PVP solution 

 Lignosulphonates 

 Adhesiveness 

Dispersant Preserve suspension and 

dispersion of solid particles in 

liquid to prevent re-aggregation 

 Alkylphenol ethoxylates 

 Aliphatic alcohol 

ethoxylates 

 Molecule weight 

 Solubility 

Disintegrant Promote break-up of tablets  Starches 

 Crosslinked 

polyvinylpyrrolidone 

 Solubility 

 Diffusivity 

Emulsifier Stabilize emulsion and prevent 

phase separation 
 Alkylphenol 

 Polyoxyethlene oxo 

alcohol 

 Polar property 

 

Filler Extend volumes and improve 

some technical properties (e.g., 

transparency, conductivity) 

 Cellulose 

 Lignin 

 Density 

 Solubility  

 Diffusivity 

Preservative Prevent decomposition caused by 

microbial growth or undesired 

chemical changes 

 Propionic acid 

 Benzoic acid 

 Biological property 

Surfactant 

(wetting agent) 

Lower surface tension between 

two phases (e.g., solid leaf-liquid 

herbicide) to ease solubility 

 Sodium lauryl sulphate 

 Nonylphenol ethoxylate 

 Hydrophilic-

hydrophobic property 

Solvent Provide liquid medium to dissolve 

other ingredients 
 Water 

 xylene 

 Ability to dissolve 

 Toxicity 

Thickener Increase viscosity without greatly 

changing other properties 
 Silica 

 Clays 

 Solubility 

 

structure formation usually involves only a few unit operation alternatives. For instance, 

homogenization is used for making emulsions, dilute dispersions, etc. Powders and granules are 

manufactured by bulk solids processing steps such as screening, milling, granulation, etc. 

Moreover, many specific models (e.g., empirical, mechanistic, and statistical models) can be used 
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for this purpose. Empirical and mechanistic models often depend on the physicochemical properties 

of the ingredients. The technical requirements can be calculated based on the selected ingredients 

and process design.  

𝑡𝑟 = 𝑔(𝑥, 𝑝𝑑)          (3.12) 

3.2.4. Step 4. Economic Analysis and Profit Maximization 

Here, product profitability is evaluated using the Net Present Value (NPV). 

𝑁𝑃𝑉 = ∑
𝑃𝐶𝐹𝑗

(1+𝑅)𝑗
𝑚
𝑗=−𝑛           (3.13) 

where 𝑅, 𝑛, and 𝑚 represent the discount rate, the time for product design and facility construction,  

and product life, respectively. The subscript 𝑗 denotes the j-th period of time. 𝑃𝐶𝐹𝑗 is the project 

cash flow in the 𝑗-th time period: 

𝑃𝐶𝐹𝑗 = {
−𝐶𝐼 − 𝑁𝑊𝐶                                                                                               𝑗 ≤ 0

(𝑝𝑟 ∙ 𝑑𝑗 − 𝑐𝑚,𝑗 − 𝑐𝑛𝑚,𝑗) ∙ (1 − 𝑡𝑎𝑥) + 𝑡𝑎𝑥 ∙ 𝐷𝑒𝑗 − ∆𝑁𝑊𝐶𝑗            𝑗 > 0
 (3.14) 

Before manufacturing starts (𝑗 ≤ 0), 𝑃𝐶𝐹𝑗 includes the capital investment (𝐶𝐼) for production 

facilities and net working capital (𝑁𝑊𝐶). After sales begin (𝑗 > 0), 𝑃𝐶𝐹𝑗 is calculated by 

subtracting from the revenue (𝑝𝑟 ∙ 𝑑𝑗), total product cost (𝑐𝑚,𝑗), nonmanufacturing cost (𝑐𝑛𝑚,𝑗), tax 

after adjusting for depreciation (𝐷𝑒𝑗), and increase in net working capital (∆𝑁𝑊𝐶𝑗). Upon the end 

of the project, all the NWC is recovered. Product price and market share are calculated using the 

pricing model and costs are obtained after the make-or-buy analysis and supplier selection. In 

general, the NPV has to meet a profit target for the project to continue. 

3.2.4.1.Pricing 

      Eq. 3.3 relates product price and market share to product quality, consumer preferences, and 

market size. Here, market share is represented by market demand (𝑑). since demand can always be 
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decided with given price and quality, only price is considered as the design variable. Based on 

microeconomics, specific pricing models have been proposed to account for this relationship in 

product design11,36. Assuming a single competitor, the demand at time j (𝑑𝑗) is calculated by 

comparing 𝑝𝑟 and 𝐻 with those of the competitor’s product (i.e., 𝑝𝑟𝑐 and 𝐻𝑐) in Eq. 3.15. In 

addition, 𝑑𝑗 and the competitor’s product demand (𝑑𝑐𝑗) are constrained by the market size (𝑌𝑗). 

(
𝑑𝑗

𝑑𝑐𝑗
)

1−𝜌

= 𝛼𝜌 ∙
𝑝𝑟𝑐

𝑝𝑟
 ∙ (

𝐻

𝐻𝑐
)

𝜌

        (3.15) 

𝑝𝑟 ∙ 𝑑𝑗 + 𝑝𝑟𝑐 ∙ 𝑑𝑐𝑗 = 𝑌𝑗         (3.16)  

where the parameter 𝛼, in the range of 0-1, is the consumer awareness on the superiority of the new 

product. 𝜌 is related to elasticity. Chan et al.,36 developed a three-step framework where 𝛼 and 𝜌 

can be systematically determined for a completely new or improved chemical product. For products 

with sufficient market data, 𝜌 is regressed from sales data and 𝛼 is decided by advertising 

expenditures. For new products without market data, specific pricing strategy (e.g., cost-based, 

customer-based, and competition-based pricing) is selected based on heuristics and then 𝛼 and 𝜌 

are estimated accordingly.  

3.2.4.2.Make-or-Buy Analysis 

Figure 3.5 shows the general procedure for the make-or-buy analysis. To begin such an 

analysis, the external (e.g., regulations and qualified suppliers) and internal information (e.g., purity 

requirements, manufacturing technologies, and company resources) is collected. Then, the major 

objectives for make-or-buy analysis should be identified. In general, objectives include cost 

reduction, quality assurance, risk control, reliable manufacturing, and reduction of time to market.94 

Moreover, many factors such as political issues, company resources, strategic plans, etc. have to 

be considered since these factors greatly influence the make-or-buy objectives. The heuristics in 
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Table 3.2 can be used to determine how the objectives can be better achieved. For instance, if the 

major objective is to reduce costs, the economic factor is the key for make-or-buy analysis. The 

binary variables (𝑚𝑜𝑏𝑖) indicates the make-or-buy decision for product ingredient 𝑖.  

 

Figure 3.5 General make-or-buy analysis procedures 

𝑚𝑜𝑏𝑖 = {
1 favoring buy  ingredient 𝑖
0 favoring make  ingredient 𝑖

      (3.17) 

Note that while 𝑚𝑜𝑏𝑖 is part of Eq. 3.4, it is an input parameter fixed by using the heuristics in 

Table 3.2. After this step, the relationship represented by Eq. 3.4 becomes a set of equations as 

discussed next. 

3.2.4.3.Supplier Selection 

Three sets of ingredients are defined and used in the following supplier selection model: 

𝑃𝐹𝐼 = {′𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑′ 𝑓𝑖𝑛𝑎𝑙 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡𝑠}   𝑀𝐹𝐼 = {′𝑚𝑎𝑘𝑒′ 𝑓𝑖𝑛𝑎𝑙 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡𝑠}  

𝐼𝐼 = {𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡𝑠}. 
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Table 3.2 Heuristics for make-or-buy decision making 

Factors Favoring ‘Make’ Favoring ‘Buy’ 

Political issues  The company has the license to produce the 

ingredient of interest 

 

 Company does not have required certification 

 Manufacturing facilities are hard to fulfill 

environmental regulations 

Strategic plan  There are risks of non-supply, unreliable 

supply, etc. 

 The ingredient is used in many products for 

various markets 

 It is required to directly control the ingredient 

quality 

 Ingredient provides uniques product quality 

 The production can leverage or share the 

existing facilities for in-house production 

 The company cannot take the risk of 

managing a new production line 

 The ingredient can be easily replaced 

 The company has close collaboration with 

suppliers 

 Suppliers offer a customer-preferred brand 

regarding quality and reliability 

 It is necessary to reduce time to market 

Manufacturing 

technology 
 The company is in a leading position and has 

advanced in-house technology 

 Manufacturing technologies can be purchased 

in the market 

 Design secrecy is required to protect 

proprietary technology 

 The ingredients can be produced from wastes 

of other production lines 

 Quality requirements cannot be met based on 

current technology 

 Manufacturing technology is not available in 

the market 

 Suppliers own the patents of the technologies  

Resource  Number of qualified suppliers is limited  

 The quality of available ingredients does not 

meet requirements 

 

 The company has limited facilities, space, 

technical supports, product experiences, and 

skilled employees for new production lines 

 The existing production line has insufficient 

capacity 

Economics  Projected sales are large and building new 

production capacity can result in economic 

benefit 

 Government offers heavy incentives and 

subsidies to promote the manufacturing 

 Limited budget for investment 

 Suppliers offer a cheaper price 

 Suppliers own better capability to reduce 

production costs 

 

Suppliers provide the ‘purchased’ final ingredients that go into the final product as well as the 

intermediate ingredients that are used to produce the ‘make’ final ingredients that go into the final 

product. Figure 3.6 shows the material flow network. Raw materials are procured from various 

suppliers. The intermediate ingredients are sent to the intermediate ingredient inventory and then 
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converted to the ‘make’ final ingredients in the ingredient manufacturing plant. The ‘purchased’ 

and ‘make’ final ingredients are stored in the final ingredient inventory ready for use in 

manufacturing the new product. Finally, the product is stored in the product inventory for 

distribution to consumers. The procurement is controlled by the ingredient supplier binary variable 

𝐼𝑆𝑟,𝑗
𝑖 . 

𝐼𝑆𝑟,𝑗
𝑖 = {

1 ingredient 𝑖 is purchased at time 𝑗 from supplier 𝑟
0 otherwise

   𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝐼𝐼 (3.18) 

 

Figure 3.6 General material flow network for procurement and production.  

If ingredient 𝑖 is purchased externally, its suppliers must be selected. Otherwise, no suppliers are 

needed.  

∑ ∑ 𝐼𝑆𝑟,𝑗
𝑖

𝑗𝑟 > 0 𝑖𝑓 𝑚𝑜𝑏𝑖 = 1    𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝐼𝐼   (3.19a) 

∑ ∑ 𝐼𝑆𝑟,𝑗
𝑖

𝑗𝑟 = 0 𝑖𝑓 𝑚𝑜𝑏𝑖 = 0     𝑖 ∈ 𝑀𝐹𝐼   (3.19b) 

When the ingredient is purchased (𝐼𝑆𝑟,𝑗
𝑖 = 1), its purity (𝑃𝑈𝑟

𝑖) must be larger than the purity 

requirement (𝑃𝑈𝑅𝑖) and the order quantity (𝑂𝑄𝑟,𝑗
𝑖 ) has to be larger than the supplier’s minimum 

order quantity (𝑀𝑂𝑄𝑟
𝑖 ), but less than the maximum production capacity (𝑀𝑃𝐶𝑟

𝑖). Otherwise, 𝑂𝑄𝑟,𝑗
𝑖  

is equal to 0.  

𝑃𝑈𝑟
𝑖 ≥ 𝑃𝑈𝑅𝑖

𝑀𝑂𝑄𝑟
𝑖 ≤ 𝑂𝑄𝑟,𝑗

𝑖 ≤ 𝑀𝑃𝐶𝑟
𝑖} 𝑖𝑓 𝐼𝑆𝑟,𝑗

𝑖 = 1   𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝐼𝐼   (3.20a) 
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𝑂𝑄𝑟,𝑗
𝑖 = 0 𝑖𝑓 𝐼𝑆𝑟,𝑗

𝑖 = 0     𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝐼𝐼   (3.20b) 

Figure 3.7 depicts the ingredient material balances.108 For the intermediate ingredient inventory, 

the amount of ingredient 𝑖 stored at the end of period 𝑗 (𝐴𝐼𝑆𝑗
𝑖) is,  

𝐴𝐼𝑆𝑗
𝑖 = 𝐴𝐼𝑆(𝑗−1)

𝑖 + ∑ 𝑂𝑄𝑟,𝑗
𝑖

𝑟 − 𝐴𝐼𝐼𝐶𝑗
𝑖             𝑖 ∈ 𝐼𝐼    (3.21) 

where 𝐴𝐼𝐼𝐶𝑗
𝑖 is the amount of intermediate ingredient 𝑖 consumed during time 𝑗, which depends on 

the amount of ‘make’ final ingredient manufactured (𝐴𝐹𝐼𝑀𝑗
𝑖𝑖) during time 𝑗.  

𝐴𝐼𝐼𝐶𝑗
𝑖 = 𝐴𝐹𝐼𝑀𝑗

𝑖𝑖 ∙ 𝑅𝐼𝐼𝑖     𝑖 ∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝑀𝐹𝐼  (3.22a) 

𝐴𝐹𝐼𝑀𝑗
𝑖𝑖 ≤ 𝑝𝑐𝑖𝑖𝑖       𝑖𝑖 ∈ 𝑀𝐹𝐼   (3.22b) 

where 𝑅𝐼𝐼𝑖 represents the required intermediate ingredient for producing one unit of ‘make’ final 

ingredient which is related to the reaction stoichiometry. 𝐴𝐹𝐼𝑀𝑗
𝑖𝑖 should be less than or equal to 

 

Figure 3.7 Timely-dependent balance of material flows in the inventory 

the production capacity of the ingredient manufacturing plant (𝑝𝑐𝑖𝑖𝑖). For the final ingredient 

inventory, the amount of the final ingredient stored at the end of time 𝑗 is, 

𝐴𝐼𝑆𝑗
𝑖 = 𝐴𝐼𝑆(𝑗−1)

𝑖 + ∑ 𝑂𝑄𝑟,𝑗
𝑖

𝑟 + 𝐴𝐹𝐼𝑀𝑗
𝑖 − 𝐴𝐹𝐼𝐶𝑗

𝑖   𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝑀𝐹𝐼  (3.23) 

Time j-1 Time j Time j+1 

Inventory 

( )

Input , 

(Production )

Consumption , 

(Distribution )

Inventory 

( ) 
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where 𝐴𝐹𝐼𝐶𝑗
𝑖 is the amount of the final ingredient consumed during time j, which is calculated by  

𝐴𝐹𝐼𝐶𝑗
𝑖 = 𝐴𝑃𝑀𝑗 ∙ 𝑚𝑓𝑖     𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝑀𝐹𝐼  (3.24a) 

𝐴𝑃𝑀𝑗 ≤ 𝑝𝑐𝑝          (3.24b) 

where 𝑚𝑓𝑖 is the mass fraction of final ingredient 𝑖 in the product formula. 𝐴𝑃𝑀𝑗 is the amount of 

product manufactured during the time 𝑗, which is less than or equal to the production capacity of 

the product manufacturing plant (𝑝𝑐𝑝). Moreover, the total inventory should be less than the 

maximum storage capacity. 𝑆𝐶𝐼𝐼𝑚𝑎𝑥 and 𝑆𝐶𝐹𝐼𝑚𝑎𝑥 are the maximum storage capacity of 

intermediate ingredient inventory and final ingredient inventory, respectively.  

∑ 𝐴𝐼𝑆𝑗
𝑖

𝑖 ≤ 𝑆𝐶𝐼𝐼𝑚𝑎𝑥     𝑖 ∈ 𝐼𝐼    (3.25a) 

∑ 𝐴𝐼𝑆𝑗
𝑖

𝑖 ≤ 𝑆𝐶𝐹𝐼𝑚𝑎𝑥     𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝑀𝐹𝐼  (3.25b) 

In addition, the inventory level at time (j-1) should ensure that production can proceed in period j,  

𝐴𝐼𝑆(𝑗−1)
𝑖 ≥ 𝜆 ∙ 𝐴𝐼𝐼𝐶𝑗

𝑖     𝑖 ∈ 𝐼𝐼    (3.26a) 

𝐴𝐼𝑆(𝑗−1)
𝑖 ≥ 𝜆 ∙ 𝐴𝐹𝐼𝐶𝑗

𝑖     𝑖 ∈ 𝑃𝐹𝐼 ∪  𝑀𝐹𝐼  (3.26b) 

where 𝜆 is the safe stock coefficient. The mass balance for the product is given below and depicted 

in parentheses in Figure 3.7. 

𝐴𝑃𝑆𝑗 = 𝐴𝑃𝑆𝑗−1 + 𝐴𝑃𝑀𝑗 − 𝐴𝑃𝐷𝑗        (3.27a) 

𝐴𝑃𝑆𝑗 ≤ 𝑆𝐶𝑃𝑚𝑎𝑥          (3.27b) 

Here, 𝐴𝑃𝑆𝑗 represents the amount of product stored at the end of time j, which is less than or equal 

to the maximum storage capacity of product inventory (𝑆𝐶𝑃𝑚𝑎𝑥). 𝐴𝑃𝐷𝑗 is the amount of product 

distributed and sold to consumers during time j. 𝐴𝑃𝐷𝑗 is equal to the expected market demand 

which is obtained from the pricing model (Eq. 3.15-3.16). 
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𝐴𝑃𝐷𝑗 = 𝑑𝑗           (3.28) 

Similar to the inventory planning of ingredients, the stock must guarantee the product availability 

for the next period.  

𝐴𝑃𝑆𝑗−1 ≥ 𝜆 ∙ 𝐴𝑃𝐷𝑗          (3.29) 

3.2.4.4.Cost Estimation 

      Product cost is determined based on the ingredient selected, process design, and supply chain 

in Eq. 3.5. Product cost consists of material cost, inventory and distribution cost, operating cost 

(𝑜𝑐𝑗), and capital cost. In general, ingredient selection determines the material cost and process 

design influences the capital cost and operating cost. Make-or-buy decisions and supplier selection 

dominate material purchasing cost, transportation cost, and inventory cost. The detailed models are 

given below. 

      Material cost consists of material purchasing cost (𝑚𝑝𝑐𝑗) and material transportation cost 

(𝑚𝑡𝑐𝑗). Material purchasing cost depends on the order quantity and purchasing unit price (𝑢𝑝𝑟,𝑗
𝑖 ).  

𝑚𝑝𝑐𝑗 = ∑ ∑ (𝑂𝑄𝑟,𝑗
𝑖 ∙ 𝑢𝑝𝑟,𝑗

𝑖 )𝑟𝑖     𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝐼𝐼   (3.30) 

The unit price is influenced by the order quantity. If the order quantity is less than a threshold value 

(𝑇𝑉𝑟
𝑖), the unit price is relatively high (ℎ𝑢𝑝𝑟

𝑖 ). However, a discount price (𝑙𝑢𝑝𝑟
𝑖 ) can be obtained 

when the order quantity exceeds the threshold value.109  

𝑢𝑝𝑟,𝑗
𝑖 = {

ℎ𝑢𝑝𝑟
𝑖       𝑂𝑄𝑟,𝑗

𝑖 < 𝑇𝑉𝑟
𝑖

𝑙𝑢𝑝𝑟
𝑖       𝑂𝑄𝑟,𝑗

𝑖 ≥ 𝑇𝑉𝑟
𝑖
    𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝐼𝐼   (3.31) 

Material transportation cost is assumed to be linearly proportional to the order quantity and 

distance. 

𝑚𝑡𝑐𝑗 = ∑ ∑ 𝑐𝑡𝑖𝑖 ∙ 𝑂𝑄𝑟,𝑗
𝑖 ∙ 𝑆𝐿𝐷𝑟

𝑖
𝑟𝑖     𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝐼𝐼   (3.32) 
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where 𝑐𝑡𝑖𝑖 is the cost of transporting 1 unit of ingredient for 1 unit distance and 𝑆𝐿𝐷𝑟
𝑖  is the straight 

line distance of supplier r to company inventory. 

      Inventory and distribution cost is comprised of ingredient inventory cost (𝑖𝑖𝑐𝑗), product 

inventory cost (𝑝𝑖𝑐𝑗), and product distribution cost (𝑝𝑑𝑐𝑗). Inventory costs are assumed to be 

proportional to the inventory levels.  

𝑖𝑖𝑐𝑗 = ∑ 𝑐𝑠𝑖𝑖 ∙ 𝐴𝐼𝑆𝑗
𝑖

𝑖      𝑖 ∈ 𝑃𝐹𝐼 ∪ 𝑀𝐹𝐼 ∪ 𝐼𝐼  (3.33) 

𝑝𝑖𝑐𝑗 = 𝑐𝑠𝑝 ∙ 𝐴𝑃𝑆𝑗          (3.34) 

where 𝑐𝑠𝑖𝑖 and 𝑐𝑠𝑝 are the costs of storing one unit of ingredient i and product for one period of 

time, respectively. Product distribution cost is proportional to the amount of product distributed to 

consumers. 

𝑝𝑑𝑐𝑗 = 𝑐𝑑𝑝 ∙ 𝐴𝑃𝐷𝑗         (3.35) 

where 𝑐𝑑𝑝 is the cost of distributing one unit of product to consumers.  

      Operating cost at time 𝑗 is proportional to the amount of product and ‘make’ final ingredients 

manufactured during time 𝑗.  

𝑜𝑐𝑗 = 𝐴𝑃𝑀𝑗 ∙ 𝑜𝑐𝑝 +  ∑ 𝐴𝐹𝐼𝑀𝑗
𝑖 ∙ 𝑜𝑐𝑖𝑖

𝑖    𝑖 ∈ 𝑀𝐹𝐼   (3.36) 

where 𝑜𝑐𝑝 represents the operating cost for manufacturing one unit of product. 𝑜𝑐𝑖𝑖 is the operating 

cost for manufacturing 1 unit of ‘make’ final ingredient. For simplicity, 𝑜𝑐𝑝 and 𝑜𝑐𝑖𝑖 are assumed 

to be constant.  

      The capital investment is based on the power law correlation. 

𝐶𝐼 = 𝑐𝑐𝑝𝑟𝑒𝑓 ∙ (
𝑝𝑐𝑝

𝑝𝑐𝑝𝑟𝑒𝑓
)

𝜑

+ ∑ 𝑐𝑐𝑖𝑟𝑒𝑓
𝑖 (

𝑝𝑐𝑖𝑖

𝑝𝑐𝑖𝑟𝑒𝑓
𝑖 )

𝜑

𝑖   𝑖 ∈ 𝑀𝐹𝐼   (3.37) 



www.manaraa.com

65 

 

where 𝑐𝑐𝑝𝑟𝑒𝑓 and 𝑝𝑐𝑝𝑟𝑒𝑓 are the capital cost and production capacity of a reference facility for 

product manufacturing, respectively. 𝑐𝑐𝑖𝑟𝑒𝑓
𝑖  and 𝑝𝑐𝑖𝑟𝑒𝑓

𝑖  are the capital cost and production capacity 

of a reference facility for producing make final ingredient, respectively. 𝜑 is the capital scaling 

factor. 

Non-manufacturing cost includes selling and administrative expenses. In this study, only 

advertisement cost at time j (𝑎𝑑𝑐𝑗) is considered (Eq. 3.7).  

𝑐𝑛𝑚,𝑗 = 𝑎𝑑𝑐𝑗          (3.38) 

In summary, the integrated product design, make-or-buy, and supplier selection problem is 

explicitly formulated as: 

 max 𝑁𝑃𝑉      (Objective function) 

s.t. Eq. 3.9-3.10, Eq. 3.12    (Quality) 

 Eq. 3.15-3.16     (Pricing) 

 Eq. 3.17-3.29     (Supply Chain) 

 Eq. 3.30-3.37     (Product cost) 

 Eq. 3.38     (Nonmanufacturing cost) 

 Eq. 3.13-3.14     (Economics) 

 Eq. 3.11     (Bounds) 

The design variables consist of product ingredient (𝑥), process design (𝑝𝑑), product price (𝑝𝑟), 

make-or-buy (𝑚𝑜𝑏𝑖), supplier selection (𝐼𝑆𝑟,𝑗
𝑖 ), order quantity (𝑂𝑄𝑟,𝑗

𝑖 ), the amount of product 

manufactured (𝐴𝑃𝑀𝑗), and the amount of intermediate ingredients manufactured (𝐴𝐹𝐼𝑀𝑗
𝑖𝑖). 

3.2.5. Step 5. Experimental Verification 
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      If the profit target is met, product prototypes can be fabricated based on the product formulation 

and process design. In this step, the predicted product quality must be verified with experiments 

and experimental iterations are performed until the design targets are achieved. This aspect of 

product design has been discussed elsewhere15,17,18 and is not included in the following case studies. 

In case the design targets or profit target cannot be met, we should return to Step 2 and generate 

new ingredient types and candidates. During the iterations, the information of suppliers, product 

price, manufacturing technologies, etc. can be considered. This action may improve the design 

efficiency. 

3.3.Light Duty Liquid Detergent in the Household and Professional Care Industry 

Light duty liquid detergent (LDLD) is widely used for washing hands, dishes, and fabrics. A 

company wants to design a new LDLD for handwashing of dishes. A bottle of product contains 1 

kg liquid detergent. Table 3.3 lists the input parameters including pricing parameters, information 

of competitor’s product, cost coefficients, tax and discount rate, etc. Some of these input parameters 

are assumed for solving the optimization problem since they are confidential in the chemical 

industry. However, every effort has been made so that the assumed numbers are reasonable. 

Table 3.3 Input parameters in the LDLD example 

Parameter Symbol Values 

Pricing parameter denoting consumer awareness  𝛼 0.7 

Pricing parameter related to elasticity   𝜌 0.5 

Price of competitor’s product 𝑃𝑐 $3.5 per bottle  

Quality score of competitor’s product 𝐻𝑐 0.9 

Safety stock coefficient 𝜆 0.67 

Cost of transporting 1 ton ingredient by 1 km 𝑐𝑡𝑖 $0.25/ton/km 

Maximum storage capacity of intermediate ingredient inventory 𝑆𝐶𝐼𝐼𝑚𝑎𝑥 600 ton 

Maximum storage capacity of final ingredient inventory 𝑆𝐶𝐹𝐼𝑚𝑎𝑥 600 ton 

Cost of storing 1 ton ingredient for 1 month 𝑐𝑠𝑖 $30 

Operating cost for manufacturing one bottle detergent 𝑜𝑐𝑝 $0.8 

Capital cost of a reference facility for detergent production 𝑐𝑐𝑝𝑟𝑒𝑓 $134000 

Production capacity of a reference facility for detergent production 𝑝𝑐𝑝𝑟𝑒𝑓 85 ton/month 
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Operating cost for producing 1 ton LAS 𝑜𝑐𝑖 $1000  

Capital cost of a reference facility for LAS production 𝑐𝑐𝑖𝑟𝑒𝑓 $8.5M 

Production capacity of a reference facility for LAS production 𝑝𝑐𝑖𝑟𝑒𝑓 300 ton/month 

Scaling factor for capital cost 𝜑 0.6 

Maximum storage capacity of product inventory 𝑆𝐶𝑃𝑚𝑎𝑥 6000 ton 

Cost of storing one bottle of detergent for 1 month 𝑐𝑠𝑝 $0.0005 

Cost of distributing one bottle of detergent 𝑐𝑑𝑝 $0.05 

Advertisement cost in one month 𝑐𝑛𝑚 $5M 

Time for product design and facility construction 𝑛 4 months 

Time of product life 𝑚 36 months 

Tax rate 𝑡𝑎𝑥 0.4 

Discount rate 𝑅 0.07 

Percentage of annual capital depreciation 𝐷𝑒 33.3% 
 

3.3.1. Step 1: Identify Consumer Preferences 

      The house of quality (Table 3.4) has six product attributes, five technical requirements, and the 

weighting factors for the product attributes.25 Note that only the most dominate technical 

requirement is identified. Cleanliness is related to the technical requirement, soil removal capability 

(𝑆𝑅𝐶). For liquid detergent, 𝑆𝑅𝐶 can be simulated by the soil titration experiment where the 

amount of soils removed by a certain amount of detergent is measured. The detailed information 

for performing soil titration experiments is elaborated by Gambogi et al.110 The foaming ability is 

quantified by the Ross-Mile Foam Height (𝑅𝑀𝐹𝐻).111 Clearly, large 𝑆𝑅𝐶 and 𝑅𝑀𝐹𝐻 are preferred. 

The attribute of quickly dispersed and dissolved is related to the viscosity. A detergent with low 

viscosity (𝑉𝐼𝑆𝐶) is likely to disperse and dissolve in water quickly to achieve detergency. The pH 

must be close to that of human skin so that the detergent is not irritating. Clear point (𝐶𝐿𝑃𝑇) is the 

temperature at which cloudy liquid turns clear upon warming. Low clear point can maintain the 

transparency of an aqueous liquid detergent, an important product attribute. The preference scores 

of the six product attributes are calculated by Eq. 3.39-3.44 based on the five technical 

requirements. Then, with the weighting factors in Table 3.4, the preference function 𝐻 for LDLD 

can be computed. Moreover, design targets are set (i.e., 𝑅𝑀𝐹𝐻 ≥ 8 𝑐𝑚, 𝑆𝑅𝐶 ≥ 95 %, 250 ≤
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𝑉𝐼𝑆𝐶 ≤ 400 𝑐𝑆𝑡, 𝐶𝐿𝑃𝑇 ≤ 5 ℃, and 5.5 ≤ 𝑝𝐻 ≤ 7.5) so that the preference scores are larger than 

0.8.  This is to ensure that high product quality can be achieved. 

Table 3.4 Identified product attributes and technical requirements of LDLD 

 Technical requirements  

Attributes SRC RMFH Viscosity  pH  
Clear 

point 
Weights 

Cleanliness Eq. 3.38     0.35 

Foaming-ability   Eq. 3.39    0.24 

Quickly dispersed and dissolved     Eq. 3.40   0.16 

Non-irritating to hands     Eq. 3.41  0.15 

Transparency      Eq. 3.42 0.06 

Stability   Eq. 43   0.04 

Eq. 3.39: 𝑦𝑐 =
1

1+𝑒
92.5%−𝑆𝑅𝐶

1.75%

   Eq. 3.40: 𝑦𝑓 =
1

1+𝑒10.3−𝑅𝑀𝐹𝐻  Eq. 3.41: 𝑦𝑞 =
1

1+𝑒
𝑉𝐼𝑆𝐶−400

20

 

Eq. 3.42: 𝑦𝑛 = 1 − (
𝑝𝐻−6.5

2
)

2

  Eq. 3.43: 𝑦𝑡 =
1

1+𝑒
2.5−𝐶𝐿𝑃𝑇

1.875

 Eq. 3.44: 𝑦𝑠 =
1

1+𝑒
𝑉𝐼𝑆𝐶−250

20

 

 

3.3.2. Step 2: Determine Ingredient Types and Generate Ingredient Candidates 

      Table 3.4 shows the required ingredient types for LDLD and their functions.110 Surfactants are 

used to remove soils. Foam booster can promote foaming and stabilize the generated foam. Buffers 

are added to control pH and viscosity. Minor additives provide multiple attributes such as color, 

smell, anti-microbial, and so on. Specific ingredient candidates for consideration in this case study 

are also identified for the new LDLD.  

3.3.3. Step 3: Select Ingredients and Design Processes 

      The process flowsheet for LDLD production consists of mixers and a homogenizer (Figure 3.8). 

Surfactant, stabilizer, solvent, and buffer are added into a mixer for pre-mixing. The pre-mixed 

mixture is fed into a homogenizer to form a homogeneous product. Then, minor additives are mixed  



www.manaraa.com

69 

 

 

Figure 3.8 General flowsheet structure for LDLD manufacturing 

Table 3.5 The required ingredient types for LDLD and CRG herbicide and the generated 

ingredient candidates 

  Ingredient types Functions Chemical candidates 

LDLD 

Surfactant Lower surface tension between soils 

and water to facilitate soil removal 
LAS, AEO, AEOS 

Buffer pH and viscosity control NaOH, NaCl 

Foam booster Promote foaming and stabilize foam DEA, TEA, CDEA 

Minor additives Color, smell, anti-microbial Formalin, fragrance 

Solvent Dissolve other ingredients Water 

CRG  

herbicide 

Active ingredient Kill weeds and retard the regrowth 

of weeds 
24D, MCPA, Metolachlor 

Filler Offer a solid base to make up 

granules and control AI release 
Starch, lignin, cellulose, PCL 

Binder Bind all solid particles together PVP 

Minor additives Color, flow-ability, etc. Pigment, gelatin, etc. 

LAS: linear alkyl benzene sulfonate;   AEO: alcohol ethoxylate;   AEOS: alcohol ethoxysulphate; 

DEA: diethanolamine;   TEA: triethanolamine;   CDEA: coconut diethanolamine; 

24D: 2,4-dichlorophenoxyacetic acid;    MCPA: 2-methyl-4-chlorophenoxyacetic acid; 

PCL: polycaprolactone;    PVP: Polyvinylpyrrolidone 
 

in to generate the LDLD. For minor additives, only formalin is considered for antimicrobial purpose 

and its mass fraction is fixed as 0.2%. Product quality is decided by the selection and composition 

of surfactant, stabilizer, and buffer. For proper ingredient selection, correlation models for 

predicting the five technical requirements are constructed here. Using the ingredient candidates 

generated in Table 3.5, Chan and Kavanagh111 prepared 20 different LDLD formulas and measured 

the five technical requirements. For each formula, the mass fraction (𝑚𝑓) of selected ingredients 

Surfactant 

Solvent

Stabilizer Mixer

Buffer

Homogenizer Mixer

Additive

LDLD
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and the measured technical requirements are listed in Table S3.1 in Supporting Information. For 

simplicity, the Supporting Information is provided in https://github.com/zx2012flying/Thesis-

Supporting-Information/blob/master/Supporting%20Information%20in%20Chapter%203.docx. 

Based on these experimental data, linear equations are regressed to calculate the five technical 

requirements (Eq. 3.45-3.49). The mean absolute percentage errors, as a measure of statistical 

accuracy, are less than 10% (Table S3.2 in Supporting Information). Note that if a candidate is 

selected, its mass fraction is larger than zero. Otherwise, the mass fraction is equal to 0.  

𝑅𝑀𝐹𝐻 = 4.14 + (0.86𝑚𝑓𝐿𝐴𝑆 + 0.06𝑚𝑓𝐴𝐸𝑂 + 0.28𝑚𝑓𝐴𝐸𝑂𝑆) + (0.6𝑚𝑓𝐷𝐸𝐴 −

0.17𝑚𝑓𝑇𝐸𝐴 + 0.4𝑚𝑓𝐶𝐷𝐸𝐴)          (3.45) 

𝑆𝑅𝐶 = −17.25 + (12.46𝑚𝑓𝐿𝐴𝑆 + 9.56𝑚𝑓𝐴𝐸𝑂 + 4.99𝑚𝑓𝐴𝐸𝑂𝑆) − (1.06𝑚𝑓𝐷𝐸𝐴 +

1.27𝑚𝑓𝑇𝐸𝐴 − 16.59𝑚𝑓𝐶𝐷𝐸𝐴)         (3.46) 

𝑉𝐼𝑆𝐶 = −31.68 − (3.31𝑚𝑓𝐿𝐴𝑆 − 1.78𝑚𝑓𝐴𝐸𝑂 + 0.15𝑚𝑓𝐴𝐸𝑂𝑆) + (19.34𝑚𝑓𝐷𝐸𝐴 +

15.59𝑚𝑓𝑇𝐸𝐴 + 5.79𝑚𝑓𝐶𝐷𝐸𝐴) + (43.02𝑚𝑓𝑁𝑎𝑂𝐻 + 13.62𝑚𝑓𝑁𝑎𝐶𝑙)    (3.47) 

𝐶𝐿𝑃𝑇 = −55.43 + (41.73𝑚𝑓𝐿𝐴𝑆 + 4.72𝑚𝑓𝐴𝐸𝑂 + 0.57𝑚𝑓𝐴𝐸𝑂𝑆) − (99.27𝑚𝑓𝐷𝐸𝐴 +

83.03𝑚𝑓𝑇𝐸𝐴 + 1.49𝑚𝑓𝐶𝐷𝐸𝐴) − (251.77𝑚𝑓𝑁𝑎𝑂𝐻 − 36.54𝑚𝑓𝑁𝑎𝐶𝑙)    (3.48) 

𝑝𝐻 = 6.56 − 4.42𝑚𝑓𝐿𝐴𝑆 + (12.46𝑚𝑓𝐷𝐸𝐴 + 9.38𝑚𝑓𝑇𝐸𝐴 + 0.70𝑚𝑓𝐶𝐷𝐸𝐴 

+31.17𝑚𝑓𝑁𝑎𝑂𝐻          (3.49) 

where the superscripts LAS, AEO, AEOS, DEA, TEA, and CDEA represent the ingredient candidates 

listed in Table 3.5.  

3.3.4. Step 4: Economic Analysis and Profit Maximization 

https://github.com/zx2012flying/Thesis-Supporting-Information/blob/master/Supporting%20Information%20in%20Chapter%203.docx
https://github.com/zx2012flying/Thesis-Supporting-Information/blob/master/Supporting%20Information%20in%20Chapter%203.docx
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3.3.4.1.Pricing 

The pricing model in Eq. 3.15-3.16 is employed. The information of the main competitor’s 

product is listed in Table 3.3. Its price is assumed to be $3.5/bottle (1 kg) and the preference score 

is 0.9. The pricing model parameters are fixed. One month is considered as one period in the 

planning horizon. The market size of LDLD in the summer is assumed as $42M per month from 

May to August, but $28M per month from November to February. The remaining months are $35M 

per month.  

3.3.4.2.Make-or-Buy Analysis 

The objective of the make-or-buy analysis is cost reduction. Therefore, the heuristics relating 

to economics in Table 3.2 are considered. All the ingredient purities are required to be larger than 

95%. It is assumed that the company owns the technologies to produce the LAS in-house by 

sulphonation of linear alkylbenezenes (LAB) with oleum and then neutralized with NaOH. As 

shown in Table 3.6, the maximum purity and production capacity can be up to 99% and 1000 

ton/month, respectively. When the company decides to make LAS in-house, LAS becomes the only 

element in the MFI set. 

3.3.4.3.Supplier Selection 

      The supplier selection model in Eq. 3.18-3.29 are applied here. Table 3.6 lists the detailed 

information of qualified suppliers for LAS such as purity, plant location, price, etc. The location of 

the production site is at the origin (0, 0) and the suppliers’ locations are given in X-Y coordinates. 

The estimated cost for manufacturing 1 ton LAS in-house is $3400. The supplier information for 

other final and intermediate ingredients is provided in Table S3.3 in Supporting Information. 
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Table 3.6 Supplier information for LAS in the LDLD example 

LAS 

Supplier 1 2 3 4 5 6 In-house 

Purity 95% 96% 97% 98% 95% 95% up to 99% 

Plant location (-115, 972) (-1160, 187) (100, 1163) (400, 150) (-200, 694) (181, 1190) (0, 0) 

MPC* (ton/m) 400 800 400 160 350 1500 up to 1000 

MOQ* (ton) 5 20 1 1 20 20 / 

Price ($/ton) 
< 50 t, 3750 

≥ 50 t, 3250 

< 100 t, 3250 

≥ 100 t, 3000 

< 20 t, 3900 

≥ 20 t, 3400 

< 20 t, 3750 

≥ 20 t, 3500 

< 100 t, 3000 

≥ 100 t, 2630 

< 100 t, 3000 

≥ 100 t, 2750 
3400** 

*MPC: maximum production capacity   MOQ: minimum order quantity.     ** Estimated cost for producing LAS in-house  
 

3.3.4.4.Cost estimation 

The product costs are calculated using Eq. 3.30-3.37. The cost coefficients are listed in Table 

3.3. Before manufacturing starts, net working capital is assumed to be 10% of capital investment.  

3.3.5. Results 

Four scenarios for this case study are discussed to demonstrate the application of the proposed 

framework. In Scenario 1, the traditional method, the purchasing department acquires the 

ingredients selected by the R&D team. In Scenario 2, the integrated approach which is proposed in 

Eq. 3.1-3.8 is employed. The new method represents an integrated design and supply chain team 

that conducts product design and materials purchasing concurrently. The solutions are then 

compared to show how the integrated approach improves profit. In Scenario 3, ingredient purity is 

required to be larger than 98%, instead of 95% in Scenario 1 and 2. Scenario 4 considers the impact 

of make-or-buy decision on product formulation.  

The optimization problem was coded in GAMS 24.7.4 and solved by using the MINLP solver 

DICOPT. Note that due to the inherent non-convexity, global optimum cannot be guaranteed. To 

improve the quality of the solutions, different initial values were used and the best results are 

reported. 
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3.3.5.1.Scenario 1: Traditional Method 

Again, the ingredients are selected by product designers to hit the design targets. Then, the 

ingredient suppliers are selected using the fixed formula by the supply chain department. The 

results are presented in the first column of Table 3.7. LAS is selected as the surfactant because of 

its strong foaming ability and soil removing capability. Both TEA and CDEA are used as stabilizer 

and NaOH is used to control the pH as LAS is acidic. Moreover, Table 3.6 shows that the purity of 

all the LAS provided by the suppliers meet the minimum requirement (≥ 95%) and suppliers’ 

products are cheaper. It is assumed that the company does not own the manufacturing technologies  

for other ingredients. Therefore, all ingredients are purchased externally. In this case, the NPV of 

the base case formula is equal to $72.5 M. 

Table 3.7 Computational results for the LDLD example 

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Product formula 

(mass fraction) 

LAS 9.12% 7.41% 5.07% 6.75% 

AEO / / / / 

AEOS / / 2.71% / 

DEA / 1.43% 1.60% 1.78% 

TEA 0.72% / / / 

CDEA 1.46% 2.18% 3.62% 2.45% 

NaOH 1.01% 0.44% / 0.20% 

NaCl / / / / 

Additives 0.20% 0.20% 0.20% 0.20% 

Water 87.49% 88.34% 86.80% 88.62% 

Technical 

requirements 

RMFH(cm) 12.4 12.3 11.7 12.0 

VISC (cSt) 303.6 304.1 307.2 306.3 

CLPT(°C) -2.3 -2.2 -6.7 -3.4 

SRC (%) 119.3 109.7 117.7 105.7 
 pH 6.8 6.8 6.6 6.7 

Quality score 0.96 0.96 0.95 0.96 

Product cost ($/bot) 1.29 1.25 1.36 1.23 

Price ($/bottle) 3.4 3.3 4.1 3.5 

Demand (M bottle/year) 54.3 55.2 38.9 51.2 

Market share 43.7% 43.8% 38.4% 42.6% 

Capital investment (M$) 1.6 1.6 1.3 9.6 

NPV (M$) 72.5 75.2 63.8 67.3 
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3.3.5.2.Scenario 2: Integrated Approach 

The results for integrated product design and supplier selection are shown in the second column 

of Table 3.7. All the ingredients are again purchased externally. Comparing with the base case, less 

LAS is used and thus less NaOH is needed to maintain the pH. DEA and CDEA are selected as 

stabilizers, instead of TEA and CDEA. Although the new formula uses a smaller amount of the key 

ingredients (i.e., surfactant, stabilizer, and buffer), the quality score is still maintained at 0.96. The 

product cost is lower than that of the base case formula and the NPV is raised to $75.2M. 

Figure 3.9 shows the order quantities during the first 12 months. LAS, DEA, and CDEA are 

procured every month to lower inventory costs since their monthly demands are large. Nonetheless, 

since the monthly demands of NaOH and formalin are small, they are purchased in large quantities 

periodically at discount prices and then used for the subsequent several months. 

 

Figure 3.9 Ingredient order quantity in the first 12 months in Scenario 2 for LDLD example 

3.3.5.3.Scenario 3: Higher Purity Constraint and Buy Option 

In this scenario, all the ingredient purities are required to be larger than 98% for quality 

assurance. Table 3.6 shows that only the supplier 4 fulfills this requirement, but the supply capacity 
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(160 ton/month) is not sufficient to meet the demand. In this situation, if we adjust the product 

formula to the amount of LAS that is available on the market, the optimization results are listed in 

the third column of Table 3.7. The mass fraction of LAS is reduced to 5.07% and another surfactant 

AEOS is added. Furthermore, product price is increased to $4.1 per bottle and annual demand is 

decreased to 38.9 million bottles. The NPV is decreased to $63.8 M.  

3.3.5.4.Scenario 4: Higher Purity Constraint and Make Option 

It is now assumed that the company makes 98% LAS in-house to meet the demand when the 

quality of available ingredients does not meet requirement. The input data (e.g., operating cost, 

capital cost, etc.) for the make option are listed in Table 3.3. The results are shown in the fourth 

column of Table 3.7. Comparing with Scenario 3, only LAS is used, the product cost is reduced, 

and the quality score increases. Furthermore, due to a lower product price, a larger market share is 

achieved. Although the capital investment is increased to $9.8M due to the construction of LAS 

manufacturing facility, the NPV is increased to $67.3M.  

3.4.Controlled Release Granule Herbicide in the Agrochemical Industry 

      Herbicides have been used to kill undesired broadleaf weeds while leaving the crops to grow 

unmolested. Traditional herbicide is easily lost due to rainwater washing, leaching, and 

volatilization. To reduce herbicide loss, it can be produced in the form of controlled release granule 

(CRG) where active ingredient (AI) is uniformly dispersed within a polymeric matrix. An 

agrochemical company wants to develop a new CRG herbicide formula. The input parameters 

including granulation model parameters, pricing model parameters, information of competitors’ 

product, cost coefficients, etc. are listed in Table S3.4 in Supporting Information. 

3.4.1. Step 1. Identify Consumer Preferences 
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Table 3.8. Identified product attributes and technical requirements in CRG herbicide example 

 Technical requirements  

Attributes 
Coverage 

area 

Time for 50%  

AI release 

Time for 85% 

AI release 

Tensile 

strength 

Mean 

diameter 
Weights 

Large coverage area Eq. 3.50     0.32 

Efficiently kill weed  Eq. 3.51    0.32 

Duration to retard 

weed regrowth 
  Eq. 3.52   0.16 

Hardness    Eq. 3.53  0.1 

Ease of use      Eq. 3.54 0.1 

Eq. 3.49: 𝑦𝑐 =
1

1+𝑒
0.0777−𝐴𝑐𝑟

0.0222

 Eq. 3.50: 𝑦𝑘 = 1 − (
𝑇50−7

5
)

2

 Eq. 3.51: 𝑦𝑟 = 1 − (
𝑇85−21

4
)

2

 

Eq. 3.52: 𝑦ℎ =
1

1+𝑒
100−𝜎𝑡𝑠

20

 Eq. 3.53: 𝑦𝑒 = 1 − (
𝑑𝑚−800

350
)

2

  

 

      The identified product attributes and technical requirements are shown in Table 3.8. Large 

coverage area is desired by farmers. The AI should be released at a fast rate at the beginning to 

quickly kill weeds, followed by a lower rate to retard the regrowth of weeds. The AI release profile 

is represented by two variables: the time for 50% and 85% AI release (T50 and T85). The former 

corresponds to the efficiency of killing weeds and the latter stands for the duration of retarding 

weed regrowth. Moreover, tensile strength (𝜎𝑡𝑠) must be sufficiently large so that the granules are 

not easily deformed. For ease of use, the mean diameter (𝑑𝑚) should be neither too large nor too 

small to avoid uneven and inconvenient spreading. Eq. 3.50-3.54 are used to calculate the 

preference scores of the five attributes. Moreover, design targets are fixed (i.e., 𝜎𝑇𝑆 ≥ 115 𝑃𝑎, 

600 ≤ 𝑑𝑚 ≤ 1000 𝜇𝑚, 𝐴𝑐𝑟 ≥ 0.045 hectare, 4.5 ≤ 𝑇50 ≤ 9.5 days, and 9.5 ≤ 𝑇85 ≤ 23.5 days) 

so that all the preference scores are larger than 0.7.  

3.4.2.  Step 2. Determine Ingredient Types and Generate Ingredient Candidates 

      Table 3.5 shows the typical ingredient types in the CRG herbicide and their functions. In 

addition to the AI, polymeric filler, and binder, minor additives are added to provide color and 

enhance particle flowability. Moreover, for each ingredient type, several typical ingredient 
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candidates are given in Table 3.5.112 . For instance, the commonly used filler includes starch, lignin, 

cellulose, and polycaprolactone. 

3.4.3. Step 3. Select Ingredients and Design Processes 

      In this example, for simplicity, only one candidate of AI, filler, and binder is selected and the 

minor additives are not considered. The process flowsheet consists of a blender pre-mixing the AI, 

filler, and additive particles. Then, the mixed ingredients are fed into the granulator where binder 

liquid is sprayed on the solid particles to form granules (Figure 3.10). Mechanistic granulation 

models have been developed to calculate the technical requirements (e.g., mean diameter, tensile 

strength) of the granules 113. The technical requirements are determined by ingredient properties 

(e.g., density, contact angle, diffusion coefficient) and operating conditions of the granulator. The 

detailed models are given in Appendix (Eq. A3.1-A3.19).  

 

Figure 3.10 General flowsheet structure for CRG herbicide manufacturing 

3.4.4.  Step 4. Economic Analysis and Profit Maximization 

3.4.4.1.Pricing 

      The market demand is calculated using the pricing model with the input parameters in Table 

S3.4 in Supporting Information. One period of time is one quarter of the year. Usually, farmers use 

herbicide in the spring and autumn to kill weeds before seeding. Thus, it is assumed that the market 

sizes in these two seasons are $50 M per season. The market sizes in summer and winter are 

negligible compared with those of spring and autumn. 

API

Filler Blender Granulator

Binder

Controlled 

release herbicide

Additives
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3.4.4.2.Make-or-buy Analysis 

      It is assumed that the company has an initial capital budget of $5M. 2,4-dichlorophenoxyacetic 

acid (24D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) are widely used. The company does 

not own the technology to manufacture 24D nor MCPA. The metolachlor is a relatively new 

herbicide, which was commercialized in 1996. It is assumed that the company has developed a low-

cost technology to synthesize metolachlor from two intermediate ingredients (CAC and MEA). The 

production capacity can be up to 300 ton/quarter. Therefore, if metolachlor is selected as AI, it can 

be either purchased externally or made in-house. Moreover, the candidates for filler and binder are 

commonly-used chemicals and many qualified suppliers can be found in the market. The objective 

of make-or-buy analysis is simply to reduce cost. 

3.4.4.3.Supplier Selection 

      The aforementioned supplier selection model in Eq. 3.18-3.29 is applied. Table S3.5 in 

Supporting Information provides the required supplier information for the candidates of AIs, fillers, 

and binder and the intermediate ingredients (i.e., CAC and MEA) for making metolachlor. 

3.4.4.4.Cost Estimation 

      Product cost is calculated based on Eq. 3.30-3.37 using the cost coefficients listed in Table S3.4 

in Supporting Information. The net working capital is assumed to be 10% of capital investment. 

3.4.5. Results 

      Three scenarios are discussed. In Scenario 1, the design problem is solved using the integrated 

approach. In Scenario 2 and 3, it is assumed that management decides to go for the newer AI 

metolachlor. Given different capital budgets, the impacts of making or buying metolachlor on the 

product formula and product profit are considered. 
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Table 3.9 Computational results for the CRG herbicide example 

 Scenario 1 Scenario 2 Scenario 3 

Product formula 

(mass fraction) 

AI 24D: 3.1% Metolachlor: 2.0% Metolachlor: 2.6% 

Filler Lignin: 63.0% Lignin: 70.0% Lignin: 84.7% 

Binder PVP: 33.9% PVP: 28.0% PVP: 12.7% 

Average shear rate (s-1) 2104 2041 2096 

Technical 

requirements 

TS (N/m2) 469 345 132 

d50 (μm) 727 751 726 

T50 (days) 5 5 5 

T85 (days) 22 23 22 

Aca (hectare) 0.13 0.1 0.13 

Preference score 0.89 0.81 0.87 

Product cost ($/bag) 15.9 14.7 12.9 

Price ($/bag) 33.9 31.0 36.5 

Demand (k bag/year) 473 518 394 

Market share 16% 16% 14% 

Capital investment (M$) 3.6 3.7 9.8 

NPV (M$) 15.6 13.9 11.5 
 

3.4.5.1.Scenario 1: Integrated Approach 

      The product design problem is solved using the integrated approach. The results are listed in 

the first column of Table 3.9. 24D is used as AI since it already can meet the design targets and the 

cost is less than the other two AIs. Lignin is used as filler. Since the company does not possess the 

technologies for manufacturing 24D and lignin, they are purchased externally. The NPV is $15.6M. 

3.4.5.2.Scenario 2: Buy Metolachlor 

      In this scenario, the newer metolachlor is selected as AI. Since the initial capital budget is 

limited to $5M, the company cannot afford the extra expenses for the construction of a new 

metolachlor production facility. Hence, it is decided to purchase metolachlor externally. A new 

product formula is generated in the second column of Table 3.9. The new product formula has a 

lower preference score. In order to compete in the market, product price is decreased to $31/bag. 

Compared with the results of Scenario 1, the profit margin is lower. The NPV is reduced to $13.9M. 
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3.4.5.3.Scenario 3: Make Metolachlor In-house 

      The company plans to increase the capital budget up to $10 M and make metolachlor in-house 

by using the low-cost technology. The results are listed in the third column of Table 3.9. The 

product cost is reduced to $12.9 per bag. Compared with the results in Scenario 2, the preference 

score and product price are higher, resulting in a larger profit margin. However, due to the extra 

expenses on metolachlor manufacturing facilities, the capital investment is increased to $9.8M. 

Finally, the NPV drops to $11.5M. Therefore, making metolachlor in-house is not recommended. 

3.5.Conclusion 

      This chapter presents a new product design framework with the simultaneous consideration of 

make-or-buy analysis and supplier selection. This framework can tell the product designers when 

and how the two issues should be incorporated to generate a more profitable product. To the best 

of our knowledge, this is the first attempt in the literature to develop such a systematic approach in 

the process systems engineering community. Chemical ingredients are classified into various types 

based on the functionalities. For each type, many ingredient candidates can be generated from 

databases and computer-aided tools. Then, proper ingredients are selected out of the candidates to 

form a product. This is followed by economics analysis consisting of pricing, make-or-buy analysis, 

supplier selection, and cost estimation are performed to maximize the profit. The framework is 

demonstrated using two examples: light duty liquid detergent and controlled release granular 

herbicide. In each example, various scenarios are discussed to illustrate how make-or-buy analysis 

and supplier selection can affect the ingredient selection, product quality, and cost which finally 

determine product profitability.  

      This study is an extension and elaboration of the proposed Grand Product Model, which 

integrates most of the important issues related to product design, such as ingredient selection, 
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process design, microstructure design, product cost, government policy, etc. The continuous 

progress towards a complete product design model is inevitable for the success of product design. 

The extension to product sustainability is in progress. 

3.6.Appendix: Mechanistic Models for Calculating CRG Technical Specifications 

The tensile strength 𝜎𝑇𝑆 can be calculated as 113 

𝜎𝑡𝑠 = 𝐶 ∙ 𝑆 ∙
1−𝜀

𝜀
∙

𝛾∙𝑐𝑜𝑠𝜃

𝑑𝑚
        (A3.1) 

Here, the material constant C is equal to 6 by assuming that solid particles are spheres. 𝜀 is the 

porosity of the granules. 𝛾 and 𝜃 are the binder surface tension and contact angle, respectively. 𝑆 

is the liquid saturation of a wet granule as calculated by 

𝑆 = 𝑀𝐶 ∙
𝜌𝑠

𝜌𝑙
∙

1−𝜀

𝜀
         (A3.2) 

where 𝜌𝑠 and 𝜌𝑙 are the true density of solids (i.e., AI and filler) and liquids (i.e., binder) in the 

CRG, respectively. 𝑀𝐶 is the moisture content which is the ratio of liquid mass to dry solid mass. 

𝑀𝐶 =
𝑚𝑓𝐵

𝑚𝑓𝐴𝐼+𝑚𝑓𝐹         (A3.3) 

where 𝑚𝑓𝐴𝐼, 𝑚𝑓𝐹  and 𝑚𝑓𝐵 are the mass fraction of AI, filler, and binder, respectively.  

      The formation of granule is modelled by considering two key mechanisms: coalescence and 

breakage 113. Large granule forms as a result of successful coalescence of smaller particles and then 

they can also break into pieces when they are so large that the collisions between granules deform 

themselves. Thus, 𝑑𝑚 is calculated based on two critical sizes: the critical size for coalescence 

(𝑑𝑐𝑜𝑎𝑙
𝑐𝑟 ) and for deformation (𝑑𝑑𝑒𝑓

𝑐𝑟 ). The granule size is finally decided by the relative values of 

these two sizes. Assuming 𝑑𝑐𝑜𝑎𝑙
𝑐𝑟 < 𝑑𝑑𝑒𝑓

𝑐𝑟 , the mean diameter will stabilize at a size between 𝑑𝑐𝑜𝑎𝑙
𝑐𝑟  

and 𝑑𝑑𝑒𝑓
𝑐𝑟  as shown 
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𝑑𝑚 = (1 − 𝑓1) ∙ 𝑑𝑐𝑜𝑎𝑙
𝑐𝑟 + 𝑓1 ∙ 𝑑𝑑𝑒𝑓

𝑐𝑟        (A3.4) 

Here, 𝑓1 implies the importance of layering on the granule growth which is assumed to be 0.6. The 

values of two critical sizes depend on either capillary or viscous effect that holds the granule 

together. Generally, for most industrial granulation processes that have high shear rates, viscous 

effect dominates. Thus, the two sizes are calculated as 

𝑑𝑐𝑜𝑎𝑙
𝑐𝑟 = 2(

9𝜇∙(1+
1

𝑒
) ln(

ℎ

ℎ𝑎
)

8𝜌𝑝∙𝜔̇
)        (A3.5) 

𝑑𝑑𝑒𝑓
𝑐𝑟 = 2 (

2𝜏𝑦∙𝑆𝑡𝑑𝑒𝑓
∗

𝜌𝑝∙𝜔̇2 )
0.5

        (A3.6) 

Here, 𝜇 and 𝑒 are the binder dynamic viscosity (0.001-0.03 Pa∙s, depending on the concentration 

of PVP solutions) and coefficient of restitution (0.5). ℎ ℎ𝑎⁄  represent the ratio of asperities over 

liquid layer which is assumed to be 5. 𝜔̇ is the average shear rate inside the granulator which is the 

process design variable. 𝜏𝑦 and 𝑆𝑡𝑑𝑒𝑓
∗  are yield stress (3000 Pa) and critical Stokes’ number for 

deformation (assumed as 0.5). 𝜌𝑝 is the particle density which is calculated by considering the 

porosity within the granule.  

𝜌𝑝 = 𝜌𝑔𝑡(1 − 𝜀)         (A3.7) 

where 𝜌𝑔𝑡 is the granule true density as expressed by  

𝜌𝑔𝑡 =
𝑀𝑔𝑡

𝑉𝑔𝑡
=

𝑀𝑔𝑡

𝑀𝑔𝑡∙𝑚𝑓𝐴𝐼

𝜌𝐴𝐼 +
𝑀𝑔𝑡∙𝑚𝑓𝐹

𝜌𝐹 +
𝑀𝑔𝑡∙𝑚𝑓𝐵

𝜌𝐵

⇒ (
𝑚𝑓𝐴𝐼

𝜌𝐴𝐼 +
𝑚𝑓𝐹

𝜌𝐹 +
𝑚𝑓𝐵

𝜌𝐵 ) 𝜌𝑔𝑡 = 1  (A3.8) 

In the granulator, granules gradually consolidate to a lower porosity. Since the viscous effect 

dominates, a model featuring inter-particle gap distance can be used as a measure of porosity. The 

reduction in inter-particle gap distance increases with increasing Stokes’ number for viscous effect. 

By replacing gap distance in the equation by Ennis et al., 114 with 2(ℎ0 − ℎ), the following equation 

can be obtained. 
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𝑑𝜀

𝑑ℎ
=

3(1−𝜀)

0.5𝑑𝑚+ℎ
          (A3.9) 

where ℎ is the thickness of binder liquid layer which is calculated by. 

ℎ =
ℎ0

2
(1 + 𝑒−𝑆𝑡𝑣)         (A3.10) 

where ℎ0 is the liquid layer thickness before consolidation (assumed to be 100 μm). The Stokes’ 

number 𝑆𝑡𝑣 is written as 

𝑆𝑡𝑣 =
2𝜌𝑝∙𝜔̇∙𝑑𝑚

2

9𝜇
          (A3.11) 

Assuming ℎ is equal to 0 and the spheres are random close packing, the theoretical maximum 

porosity is 0.36. Based on this initial condition, Eq. A3.12 is obtained by integrating Eq. A3.9. 

1−𝜀

1−0.36
= (

0.5𝑑𝑚

0.5𝑑𝑚+ℎ
)

3

         (A3.12) 

      The coverage area is proportional to the mass fraction of AI in the granule. 

𝐴𝑐𝑟 =
𝑚𝐶𝑅𝐺∙𝑚𝑓𝐴𝐼

𝐹𝐴𝐼          (A13) 

Here, 𝑚𝐶𝑅𝐺 represents the mass of one bag herbicide product (5 kg) and 𝐹𝐴𝐼 denotes the mass of 

AI needed for treating 1 hectare land.  

      AI release is controlled by two mechanisms: the dissolution of granule and AI diffusion within 

the granule. When either starch or lignin is used as filler, the release is controlled by the AI diffusion 

from the interior of a granule into the soil. Diffusion within a granule can be modeled using Fick’s 

second law and the percentage 𝑝𝑑𝑓(𝑡) of the released AI at time t is calculated by 

𝑝𝑑𝑓(𝑡) = 1 −
6×∑ (

1

𝑚2∙𝑒
−

4𝑚2∙𝜋2∙𝐷𝐹∙𝑡 

𝑑𝑚
2

)∞
𝑚=1

𝜋2       (A3.14) 

Here, 𝐷𝐹 is the filler’s diffusion coefficient. Thus, if 𝑝𝑑𝑓(𝑡) is set equal to 50%, the corresponding 

𝑇50
𝑑𝑓

 is expressed as 
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∑ (
1

𝑚2 ∙ 𝑒
−

4𝑚2∙𝜋2∙𝐷𝐹∙𝑇50
𝑑𝑓

 

𝑑𝑚
2

)∞
𝑚=1 = (1 − 0.5) ×

𝜋2

6
      (A3.15) 

In the same manner, the time for 85% AI release (𝑇85
𝑑𝑓

) is calculated as 

∑ (
1

𝑚2 ∙ 𝑒
−

4𝑚2∙𝜋2∙𝐷𝐹∙𝑇85
𝑑𝑓

 

𝑑𝑚
2

)∞
𝑚=1 = (1 − 0.85) ×

𝜋2

6
     (A3.16) 

If either cellulose or PCL is applied as filler, the release of AI depends on their dissolution rates. 

In this case, the percentage 𝑝𝑑𝑠(𝑡) of the released AI at time t is calculated as 

𝑝𝑑𝑆 = 1 − (1 −
2𝑘𝐹∙𝑡

𝜌𝑝∙𝑚𝑓𝐹∙𝑑𝑚
)

3

        (A3.17) 

Here, 𝑘𝐹 is the dissolution rate constant of the filler. Therefore, the 𝑇50
𝑑𝑠 and 𝑇85

𝑑𝑠 are equal to 

𝑇50
𝑑𝑠 =

(1− √0.5
3

)∙𝜌𝑝∙𝑚𝑓𝐹∙𝑑𝑚

2𝑘𝐹         (A3.18) 

𝑇85
𝑑𝑠 =

(1− √0.2
3

)∙𝜌𝑝∙𝑚𝑓𝐹∙𝑑𝑚

2𝑘𝐹         (A3.19) 

Note that the detailed derivation of Eq. A3.14 and A3.17 was written in the Chapter 5 of Seider, et 

al.25 
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Chapter 4: Sustainable Product Design: A Life-Cycle Approach 

4.1.Introduction 

Product design plays an increasingly important role in the chemical industry3 and much 

progress has been made in the past two decades. In teaching, several books have been 

published.25,115-117 In research, different approaches such as model-based methods, rule-based 

methods, databases, and experiments have been used to design perfume,86 paint,87 inkjet ink,29 

smart window,118 etc. Moreover, the Grand Product Design model has been proposed to capture 

the conceptual relationships among various product design tasks (e.g., ingredient selection, process 

design, costing, etc.).2 Recently, it has been expanded by incorporating the influence of business 

and management issues such as pricing,36 government policy and corporate social responsibility.90 

With the depletion of natural resources and awareness of the damage to the environment, the quest 

for sustainability has been recognized. Many perspective papers identified the needs and 

opportunities to move towards sustainability.119-122 In this chapter, we focus on the design of 

sustainable chemical products. 

Sustainability consists of economic, environmental, and social (EES) pillars. Sustainable 

product can be considered as a product that has minimal EES impact over its life cycle.123 Figure 

4.1 shows the generic product life cycle including raw material production, product manufacturing, 

and product use. At end of use, some can be recycled by recovering certain ingredients for 

manufacturing the same product or other products. Otherwise, the product is disposed by landfill 

or incineration. The arrows denote the transportation of materials and products. To assess product 

sustainability, the state-of-the-art life cycle sustainability assessment (LCSA) framework was 

proposed.124,125 In this framework, life cycle costing (LCC) which aggregates all costs related to a 

product over its life cycle is used to assess the economic impact. In addition, life cycle assessment 
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(LCA) and social life cycle assessment (SLCA) are used to evaluate the environmental and social 

impact, respectively. Accordingly, LCSA = LCC + LCA + SLCA.124 While LCSA provides in 

principle quantitative results, its applicability relies on the availability of accurate life cycle 

inventory (LCI) data which accounts for the input and output of processes involved in a product 

life cycle.126 In practice, collecting LCI data is time-consuming and there are limited LCI data for 

most processes. Alternatively, rule-based methods can be applied to qualitatively assess 

sustainability for decision-making. The one often used is the sustainability checklist consisting of 

various questions related to the major EES impact at each life cycle stage.126-128 Although rule-

based methods cannot generate quantitative and holistic results, it is useful to screen design 

alternatives in the early phase of sustainable product design.  

 

Figure 4.1. Generic product life cycle 

As the EES impact at each life cycle stage can vary for different products, different solutions 

are needed to improve product sustainability. At present, many general principles, guidelines, and 

tools can be used to reduce the EES impact of a product at different life cycle stages.129-133 For 

instance, Go et al.131 listed the guidelines to design products that can be easily recycled. Heintz et 

al.133 developed a computer-aided molecular design tool to design bio-based products. However, 

re-designing a product with improvement at one single life cycle stage cannot ensure a 

sustainability improvement in the entire life cycle. General sustainable product design solutions 

cannot be used alone and must be applied in conjunction with life-cycle-based sustainability 
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assessment tools. Thus, a framework integrating general sustainable product design solutions and 

life-cycle-based assessment tools is highly desired. 

So far, many sustainable product design frameworks have been proposed. For instance, 

Badurdeen et al.134 proposed a multi-objective optimization framework for ingredient selection to 

minimize life-cycle-based economic and environmental impact of a product. Ahmad et al.132 found 

that most of the existing product design frameworks only focused on economic and environmental 

aspects of product sustainability. To fill this gap, LCSA and sustainability checklist can be used to 

assess all three dimensions of sustainability. However, these approaches have only been used to 

evaluate given products. No one considered how these methods can be integrated into a systematic 

framework for designing sustainable chemical products. 

In this chapter, a generic framework is developed where LCSA, rule-based methods, and 

general sustainable product design principles and knowledge are properly integrated. If the needed 

LCI data are available, the most sustainable product is obtained through optimization. Otherwise, 

the sustainable design alternative is identified using sustainability checklist. This framework that 

can be utilized in different phases of sustainable product design has two major novelties. First, the 

generic and coherent framework incorporates rule-based and model-based methods for sustainable 

chemical product design. Second, LCSA is incorporated into optimization to provide a 

comprehensive and quantitative view of the EES aspects of sustainability. The chapter is organized 

as follows. First, the sustainable product design problem is described. Then, the proposed 

framework is elaborated to solve the sustainable product design problem. Finally, two case 

studiescomposite bumper beam and lithium ion batteryare provided to illustrate the applicability 

of the framework. 
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4.2.Problem Statement 

Figure 4.2 shows how sustainability can be achieved in product design. All icons except 

sustainability (i.e., ingredient, process design, product cost, consumer preferences, product quality, 

supply chain, and government policies) are extracted from the Grand Product Design Model.2 

Starting at the middle, a base-case product can be generated based on consumer preferences. The 

ingredients and manufacturing process of the base-case product are identified to ensure that its 

quality meets consumer needs. Then, a more sustainable product will be designed through 

analyzing and improving the base-case product. The new product must fulfill the consumers’ 

requirements. The sustainability icon (at the top) contains the information on the way in which the 

product is disposed and recycled, including the available recycle processes and possible collection 

rate. Conceptually, sustainability is related to ingredient selection,135 process design,136-138 supply 

chain,139,140 consumer preference,141 and government policy142 as captured in Figure 4.2. Clearly, 

the design space is very broad and it is not practical to use rigorous models for considering the 

variations of all these variables. In this study, to ensure that the problem is tractable and solvable, 

only the selection of ingredient, process, and end-of-use strategy are varied. The consumer 

preferences are fixed. The variations of government policy and supply chain are not considered. 

Also, only a limited number of product design alternatives will be generated based on which the 

sustainable product is obtained. Accordingly, the problem to be formally addressed is as follows. 

First, the new product must meet a set of consumer needs and technical requirements. Second, a 

base-case product with known ingredients and manufacturing process is available. The objective is 

to design a more sustainable product than the base-case one based on a number of design 

alternatives identified. Design considerations include the selection of ingredients, manufacturing 

process, and end-of-use process (i.e., landfill, incineration, or any available recycle process). To 
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keep the research focused, process details (e.g., operating conditions and equipment) are not 

considered.

 

Figure 4.2. Conceptual product design models by incorporating sustainability 

The sustainable product design problem is formulated as the relationship models in Eq. 4.1-4.5. 

The objective function (Eq. 4.1) is the maximization of product sustainability (𝑆𝑇). This objective 

considers the benefits to the entire society and might conflict with the conventional profitability 

measures. In other words, it may not result in a profitable product to the manufacturer. 𝑆𝑇 accounts 

for the EES impact in raw material production (𝐸𝐸𝑆𝑅𝑀𝑃), product manufacturing (𝐸𝐸𝑆𝑃𝑀), product 

use (𝐸𝐸𝑆𝑃𝑈), and end of use (𝐸𝐸𝑆𝐸𝑂𝑈) stages in Eq. 4.2a. Based on Figure 4.2, these impact depend 

on many variables (Eq. 4.2b-e). For instance, 𝐸𝐸𝑆𝑃𝑀 is decided by ingredient selection (𝑥), 

manufacturing process selection (𝑝𝑑), supply chain (𝑆𝐶), and government policies (𝐺). 𝐸𝐸𝑆𝐸𝑂𝑈 

depends on 𝑥, 𝑆𝐶, 𝐺, collection rate (𝑐𝑟), and the selection of recycle process (𝑟𝑝𝑑) and product 

disposal (𝑝𝑑𝑖𝑠). As an example of government policies, regulation can be imposed on certain 

environmental or social indicators (e.g., CO2 emissions, water consumption, minimum wage, etc.). 

In this case, the regulation should be considered as constraints in the optimization problem.As 

stated above, only 𝑥, 𝑝𝑑, 𝑟𝑝𝑑, and 𝑝𝑑𝑖𝑠 are regarded as design variables. The consumer preferences 
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(𝐻), 𝑆𝐶, 𝐺, and 𝑐𝑟 are fixed parameters. Moreover, product cost (𝑐𝑚) depends on 𝑥 and 𝑝𝑑 in Eq. 

4.3. Product quality (𝑞) is decided in Eq. 4.4a and design constraints in Eq. 4.4b must be fulfilled. 

Eq. 4.5 accounts for the lower and upper bounds (𝑐𝐿 and 𝑐𝑈) of the variables. The underlined 

entities are different types of variables. For instance, 𝑥 consisting of ingredient selections and their 

compositions is a vector while 𝑝𝑑 includes process flowsheet, operating conditions, etc. The arrows 

←, instead of equal signs, signify that the LHS variables can be decided from the RHS variables 

through different approaches such as mathematical models, rule-based methods, databases, etc. For 

instance, with the needed LCI data, Eq. 4.2a-e can be represented using LCSA model. Otherwise, 

rule-based methods are utilized. Note that for ease of reading, a list of symbols for the variables 

and parameters is given in the Nomenclature in Supporting Information. 

max
𝑥, 𝑝𝑑,𝑟𝑝𝑑,𝑝𝑑𝑖𝑠 

  𝑆𝑇          (4.1) 

s.t. 𝑆𝑇 ← [𝐸𝐸𝑆𝑅𝑀𝑃 , 𝐸𝐸𝑆𝑃𝑀, 𝐸𝐸𝑆𝑃𝑈, 𝐸𝐸𝑆𝐸𝑂𝑈]      (4.2a) 

 𝐸𝐸𝑆𝑅𝑀𝑃 ← 𝑇𝑟𝑚𝑝(𝑥, 𝑆𝐶, 𝐺)        (4.2b) 

 𝐸𝐸𝑆𝑃𝑀 ← 𝑇𝑝𝑚(𝑥, 𝑝𝑑, 𝑆𝐶, 𝐺)        (4.2c) 

 𝐸𝐸𝑆𝑃𝑈 ← 𝑇𝑝𝑢(𝑥, 𝐻, 𝑆𝐶, 𝐺)        (4.2d) 

 𝐸𝐸𝑆𝐸𝑂𝑈 ← 𝑇𝐸𝑂𝐹(𝑥, 𝑆𝐶, 𝐺, 𝑟𝑝𝑑, 𝑐𝑟, 𝑝𝑑𝑖𝑠)      (4.2e) 

 𝑐𝑚 ← 𝑇𝑐𝑚(𝑥, 𝑝𝑑)         (4.3) 

 𝑞 ← 𝑇𝑞(𝑥, 𝑝𝑑, 𝐻)         (4.4a) 

 𝑞𝐿 ≤ 𝑞 ≤ 𝑞𝑈          (4.4b) 

𝑐𝐿 ≤ 𝑓 (𝑥, 𝑝𝑑, 𝑟𝑝𝑑, 𝑝𝑑𝑖𝑠, 𝑐𝑚) ≤ 𝑐𝑈       (4.5) 
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4.3.Sustainable Product Design Framework 

The systematic framework is proposed in Figure 4.3 to solve the sustainable product design 

problem. It consists of five steps. At each step, the models and rules (shown in parentheses) are 

used for decision-making. In Step 1, product technical requirements are identified as design 

constraints. In Step 2, a base-case product is generated and available recycle processes are 

collected. In Step 3, LCSA or a rule-based method is used to decide the life cycle of base-case  

product. Meanwhile, the hotspots (i.e., life cycle stages with major impact) are identified. To 

improve the hotspots, a few design targets and design alternatives are generated in Step 4. Finally, 

LCSA or a rule-based method is used to determine the sustainable product design. Note that many 

heuristics are applied in the design framework to provide general guidance for facilitating decision 

making, instead of detailed solutions to specific problems. 

 

Figure 4.3. Sustainable product design framework 

4.3.1. Step 1: Identify Product Technical Requirements 

Step 1: Identify Product Technical Requirements

Step 2: Identify Base-case Product and Available Recycle Processes

• Generate a base-case product

• Search for available recycle processes (Table 4.1)

Step 3: Decide Base-case Product Life Cycle and Hotspots

• Using LCSA (Figure 4.4 and Eq. 4.7-4.16)

or • Using rule-based methods (Table 4.2-4.3)

Step 4: Generate Design Targets and Alternatives for Enhancing Sustainability

• Propose product design targets to improve the hotspots (Table 4.4)

• Generate potential product design alternatives

Step 5: Product Design towards Sustainability

• Using LCSA to optimize the most sustainable product (Eq. 4.17-4.20)

or • Using rule-based method to screen promising design alternatives (Table 4.5)
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The consumer preferences 𝐻 includes various qualitative product attributes (e.g., cleanliness 

for detergent, stability for lotion, crashworthiness for bumper beam, etc.), which can be identified 

through consumer survey. Then, 𝐻 is translated into a set of technical requirements (𝑡𝑟) by using a 

knowledge-base and heuristics. The technical requirements can be physicochemical and  

Table 4.1. Available recycle processes in the current market 

Mechanical/Physical Recycle Processes 

Processes Description 
Ingredient 

recovery ratea 

Milling and  

  screening 

Break solid materials into smaller pieces and recover 

materials within pre-specified sizes by screening  
70-90% 

Dissolution and  

  re-precipitation 

Recover materials based on their solubility differences in 

selected solvents (e.g., PE and PP in xylene) 
up to 98% 

Re-melting and     

  remolding 

Recover some metals (e.g., aluminum), alloys, and 

thermoplastic polymers (e.g., polyurethane) 
60~90% 

Magnetic  

  separation 

Recover ferromagnetic materials (e.g., iron, cobalt, nickel, 

etc.) from non-magnetic materials 
85-95% 

Gravity separation Recover materials based on different material density (e.g., 

metal and plastics, rubber and plastics, etc.) 
40-90% 

Electrostatic  

  separation 

Recover materials based on the different charge carrying 

properties (e.g., solid conductors and plastics, PE/PVC) 
40-90% 

Chemical/Thermal Recycle Processes 

Processes Description 
Ingredient 

recovery rate 

Decomposition  Decompose polymers to recover other valuable materials by 

using solvolysis, hydrolysis, pyrolysis, gasification, etc. 
up to 99% 

Pyro-metallurgical   

  process 

Use smelting process to separate valuable metals from 

complex structured product and recover metals by using 

dissolution, crystallization, etc. 

50~90% 

Hydrometallurgical  

  process 

Dissolve valuable metals from complex structured products 

and recover metals by leaching, precipitation, etc. 
40~95% 

a recovery rate = amount of recovered ingredients / total amount of input ingredients to be recycled 

mechanical properties (e.g., pH, viscosity, mechanical modulus), functional performance (e.g., 

dissolution time, shelf life), or product characteristics (e.g., color, smell). To ensure high product 

quality, the design constraints for the technical requirements (i.e., 𝑡𝑟𝐿 and 𝑡𝑟𝑈) should be specified.  

𝑡𝑟𝐿 ≤ 𝑡𝑟 ≤ 𝑡𝑟𝑈          (4.6) 
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4.3.2. Step 2: Identify Base-Case Product and Available Recycle Processes 

4.3.2.1.Generate a base-case product 

Serving as a reference, a base-case product that fulfills the design constraints is generated. In 

general, the base-case product can be an existing product which has already been manufactured or 

a completely new product prototype conceptualized in the laboratory. For an existing product, the 

information of product ingredients as well as manufacturing process can be identified from the 

literature, patents, company websites, etc. For a totally new prototype, it can be generated based on 

the brainstorming, technical know-how, heuristics, and marketing experience.25 

4.3.2.2.Search for available recycle processes 

For recycle processes, certain ingredients are separated and recovered while the others are 

disposed. Regarding the base-case product, the information of product recycling (i.e., available 

recycle processes and possible collection rate) must be identified. These will be used for decision-

making in Step 3. Currently, the development of many product recycle processes are in their 

infancy. Available recycle techniques are limited and most of them are developed to recycle waste 

electronical and electronic equipment, polymers, papers, and metals. Table 4.1 shows two types of 

product recycle techniques and the typical ingredient recovery rates. For the mechanical processes, 

ingredients are separated based on their different physical properties (e.g., solubility, density, 

magnetism, etc.) without changing chemical structures. Magnetic separation and gravity separation 

are examples.143,144 For chemical/thermal processes, the ingredients undergo a series of reactions 

to recover the desired materials. For instance, the pyro-metallurgical process is widely used to 

recover metals from waste electronics.144  

4.3.3. Step 3: Decide Base-case Product Life Cycle and Hotspots 
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In Step 3, the first task is to decide the life cycle of base-case product. In particular, we must 

decide whether and which available recycle process should be applied. The second task is to 

identify the hotspots. These tasks can be achieved by using LCSA or rule-based methods. When 

LCI data is available, using LCSA is preferred as it offers quantitative and holistic results. 

Otherwise, rule-based methods can be applied for decision-making, especially in the early phase 

of sustainable product design.  

4.3.3.1.Using LCSA 

LCSA is carried out in four phases: 1) goal and scope; 2) life cycle inventory analysis; 3) impact 

assessment; 4) intepretation.125  

In the first phase, the functional unit, system boundary, and allocation method should be 

identified. The functional unit is a measure of the functionalities that the product needs to provide 

such as fuels with 1 GJ energy, detergents for cleaning 1000 dishes, etc. This ensures that the 

comparison of different products in LCSA is on an equal basis. The system boundary defines which 

life cycle stages are included for consideration in the assessment. In general, the five life cycle 

stages (in boxes) in Figure 4.1 should be included. Since a production system may produce many 

products, an allocation method must be specified to fairly allocate the total impact to each product. 

So far, many methods have been developed such as system expansion, partitioning, substitution, 

etc. The ISO 14044-2006-2 manual recommends using system expansion and partitioning although 

they still have many limitations.145 Currently, there is no consensus on the selection of allocation 

method in the LCSA field. It depends on the research topic and objectives. For instance, as used in 

the case study in this chapter, the substitution method is often applied when the production system 

involves recycle process.145 In this method, the credit of using recycled materials is not allocated 



www.manaraa.com

95 

 

to recycle process, but to the raw material production. This is because the production of raw 

materials is avoided in the future. 

The second phase is to collect the LCI data of processes for sustainability assessment. Figure 

4.4 shows the inventory data for a unit process consisting of facilities (e.g., land and equipment), 

energy (e.g., natural gas and electricity), materials (e.g., steam and chemicals), social information 

(e.g., accrued jobs and wage levels), products, by-products, and emissions (e.g., waste water and 

VOC).146,147 Clearly, the LCI data is influenced by the selection of ingredient and process. As an 

example, Table S4.1-S4.8 in Supporting Information list the LCI data of the processes involved in 

the life cycle of composite bumper beam. The Supporting Information is provided in 

https://github.com/zx2012flying/Thesis-Supporting-Information/blob/master/Supporting%20 

Information%20in%20Chapter%204.docx. In general, LCI data can be retrieved from the literature 

and databases (e.g., Ecoinvent, social hotspot, PSILCA). Ecoinvent contains the data of facilities, 

energy, materials, and output emissions for many processes. The social hotspot and PSILCA 

databases offer the social information of thousands of processes. 

 

Figure 4.4. Input-output inventory for process units 

In the third phase, LCI data is translated into EES impact by using the specific impact 

assessment models of LCC, LCA, and SLCA. In LCC, the inputs are monetized and these costs are 

aggregated by cost categories.125 These calculations may involve many assumptions and 
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approximations. For instance, if the amount of an input is very small, its costs can be neglected. In 

addition, market prices can be used to monetize the input materials when the data of life cycle cost 

coefficients of materials are not available. Bearing these in mind, the cost (𝑐𝑖) at stage 𝑖 is calculated 

as follows  

𝑐𝑖 = 𝑐𝑓𝑎𝑖 + 𝑐𝑚𝑎𝑖 + 𝑐𝑒𝑛𝑖 + 𝑐𝑙𝑎𝑖        (4.7) 

Four categories are considered here, consisting of facilities cost (𝑐𝑓𝑎𝑖), material cost (𝑐𝑚𝑎𝑖), 

energy cost (𝑐𝑒𝑛𝑖), and labor cost (𝑐𝑙𝑎𝑖). Other costs are presumably negligible. 𝑐𝑓𝑎𝑖 depends on 

the amount of the 𝑓-th input facility at stage 𝑖 (𝐼𝐹𝑖,𝑓 in piece of plant). 𝐶𝐼𝐹𝑖,𝑓 is the capital cost of 

the 𝑓-th input facility (in $/plant).  

𝑐𝑓𝑎𝑖 = ∑ 𝐼𝐹𝑖,𝑓 ∙ 𝐶𝐼𝐹𝑖,𝑓𝑓          (4.8) 

𝑐𝑚𝑎𝑖 is linearly proportional to the amount of 𝑚-th input material at stage 𝑖 (𝐼𝑀𝑖,𝑚 in kg). 𝐶𝐼𝑀𝑖,𝑚 

is the unit cost of the 𝑚-th input material (in $/kg). 

𝑐𝑚𝑎𝑖 = ∑ 𝐼𝑀𝑖,𝑚 ∙ 𝐶𝐼𝑀𝑖,𝑚𝑚          (4.9) 

𝑐𝑒𝑛𝑖 depends on the amount of 𝑒-th input energy at stage 𝑖 (𝐼𝐸𝑖,𝑒 in MJ). 𝐶𝐼𝐸𝑖,𝑒 is the unit cost of 

the 𝑒-th input energy (in $/MJ). 

𝑐𝑒𝑛𝑖 = ∑ 𝐼𝐸𝑖,𝑒 ∙ 𝐶𝐼𝐸𝑖,𝑒𝑒           (4.10) 

𝑐𝑙𝑎𝑖 is the number of input labor headcount at stage 𝑖 (𝐼𝐿𝑖 in full-time equivalent for a year) 

multiplied by the average wage level (𝑊𝐿𝑖 in $/headcount/year). 

𝑐𝑙𝑎𝑖 = 𝐼𝐿𝑖 ∙ 𝑊𝐿𝑖          (4.11) 

Thus, the life cycle economic impact (𝐸𝑐𝐼) of a product is obtained as follows  

𝐸𝑐𝐼 = ∑ 𝑐𝑖𝑖           (4.12) 
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In LCA, the inventory data (i.e., facilities, materials, energy, and emissions) are first translated into 

18 midpoint factors (e.g., real damages such as ozone concentration, algae growth, etc.) that cause 

damage to three endpoint factors (i.e., human, ecosystem, and resource). Then, the three endpoint 

factors are further aggregated into an environmental index. After selecting the region boundary 

(e.g., European region or world region), the corresponding normalization parameter set for 

midpoints and endpoints is used. These procedures are elaborated in detail by Huijbregts et al.148 

and can be performed using commercial software such as Simapro and Gabi. Thus, the 

environmental impact (𝑒𝑖) at stage 𝑖 is equal to the aggregated impact of facilities (𝑒𝑓𝑎𝑖), materials 

(𝑒𝑚𝑎𝑖), energy (𝑒𝑒𝑛𝑖), and emissions (𝑒𝑒𝑚𝑖):  

𝑒𝑖 = 𝑒𝑓𝑎𝑖 + 𝑒𝑚𝑎𝑖 + 𝑒𝑒𝑛𝑖 + 𝑒𝑒𝑚𝑖       (4.13) 

Accordingly, the life cycle environmental impact (𝐸𝑛𝐼) is calculated as:  

𝐸𝑛𝐼 = ∑ 𝑒𝑖𝑖           (4.14) 

In SLCA, the social information is converted into various indicators such as unemployment, 

minimum wage, etc.147 Again, various normalization parameters can be used for this conversion. 

Then, they are aggregated into one index (𝑠𝑖) that denotes the product’s social impact at stage 𝑖. 

Similarly, the life cycle social impact (𝑆𝑜𝐼) is calculated as follows 

𝑆𝑜𝐼 = ∑ 𝑠𝑖𝑖           (4.15) 

The fourth phase is to analyze the results for generating conclusions and recommendations. For 

base-case product, a proper end-of-use strategy should be selected. Using landfill as the reference, 

the optimal end-of-use strategy can be decided by solving the following minimization problem.  

min
𝐽

𝐸𝑐𝐼𝐽
𝑏

𝐸𝑐𝐼𝐿𝑎𝑛𝑑𝑓𝑖𝑙𝑙
𝑏 +

𝐸𝑛𝐼𝐽
𝑏

𝐸𝑛𝐼𝐿𝑎𝑛𝑑𝑓𝑖𝑙𝑙
𝑏 +

𝑆𝑜𝐼𝐽
𝑏

𝑆𝑜𝐼𝐿𝑎𝑛𝑑𝑓𝑖𝑙𝑙
𝑏       

s.t.   𝐽 ∈ {landfill, incineration, recycle process 1, … , j}     (4.16)  
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The superscript 𝑏 stands for the base-case product. 𝐽 denotes landfill, incineration, or recycle 

processes. After this, the hotspots of base-case product should be identified.149 By analyzing the 

EES impact at each life cycle stage, the stages associated with major impact can be identified and 

should be improved. Note that due to the limitations of current sciences and technologies, it is 

always difficult to improve the stage with the highest impact. Clearly, reducing the impact at any 

stage can contribute to product sustainability. Thus, we can consider the stages with the second 

highest or third highest impact as hotspots although the potential improvement on sustainability 

may be smaller. The stage with the highest impact can be identified to indicate the direction for 

future technology innovation and development. 

4.3.3.2.Using heuristics 

If the needed LCI data is not available, heuristics are used. Three tasks are conducted: analyze 

product recyclability, select recycle process (if necessary), and identify hotspots.  

Product recyclability is analyzed to decide if the product is worth recycling. Economic, 

environmental, and social factors affect this decision-making. The heuristics in Table 4.2 can be 

used to help make a decision. For instance, if a product (i.e., battery and electronics) consists of 

rare metals, it should be recycled to preserve the mineral reserves. In contrast, some liquid products 

such as liquid detergent and hand lotion are directly consumed and cannot be re-collected for 

recycling.  

Given multiple techniques are available to recycle the product, a proper recycle process should 

be selected. To do so, we need to decide which product ingredients should be recovered. Clearly, 

the expensive and rare materials are preferred to recycle. Three rules can be used to select a 

relatively safe, economic, and environment-friendly recycle process. 
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Table 4.2. Factors and heuristics for recycle-or-not decisions 

Factors Situations favoring ‘recycle’ Situations favor ‘not recycle’ 

Economic  The product can be easily re-collected 

and sorted (concentrated). The re-

collection channels and facilities are 

available. 

 Government subsidy is provided to 

stimulate product recycling. 

 Certain product ingredients are very 

valuable in the market. 

 The product cannot be recycled as it is 

directly consumed or hard to separate from 

other wastes. 

 Recycling technologies are not available in 

the market or still under development. 

 The product consists of cheap and abundant 

commodities or renewable materials. 

 The recovered materials are hard to reuse, 

due to non-removable impurities or 

structural changes. 

Environmental  The product consists of scarce materials 

with limited reserve (e.g., rare metals). 

 The product consists of toxic and 

erosive materials that harms the 

environment or human. 

 Certain ingredients are produced by 

using energy-intensive or polluting 

processes 

 Debris or toxic wastes would be produced 

during the re-collection or recycling stages. 

 The recycle processes use hazardous 

chemicals or release harmful pollutants. 

 The product is degraded in nature in a short 

period of time.  

Social  Government regulates that the product 

or certain product ingredients must be 

recovered. 

 Many jobs can be created by 

establishing the recycle facilities. 

 The products should not be recycled for 

infection control, such as surgical masks 

and gloves, etc. 

 Recycle processes lead to fatal accidents 

(e.g., explosion, worker injury, etc.) 

 Rule 1. Select the widely-used and easily accessible process 

 Rule 2. Select the process through which the desired materials are recovered with less loss 

 Rule 3. Select the process using less processing, energy, and chemicals/solvents 

The last task is to decide the hotspots. As listed in Table 4.3, chemical products can be classified 

into two types: consumable and durable.150 The consumable products are directly used up such as 

perfume, food, shampoo, etc. The typical hotspots of consumable products are raw material 

production and product disposal. On the other hand, the durable products are not consumed directly 

such as battery, refrigerant, light bulb, etc. The typical hotspots of durable products are product use 

and product recycle.150  
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Table 4.3. Typical hotspots for two types of chemical products150 

 Characteristics Examples Typical hotspots 

Consumable 

product 

Products are directly consumed 

throughout their use. 

Pesticide, shampoo, food, 

paint, perfume, inkjet 

ink, etc. 

Raw material 

production and 

product disposal 

Durable 

product 

Products are not consumed 

directly, and last for a long 

time in the same product form. 

Battery, air purifier, 

bumper beam, light 

bulb, etc. 

Product use and 

product recycle 

 

4.3.4. Step 4: Generate Design Targets and Alternatives for Enhancing Sustainability 

4.3.4.1.Propose product design targets to improve the hotspots 

Various product design targets can be proposed to improve the identified hotspots. Currently, 

the design targets cannot be automatically generated by using any methods or tools. Therefore, 

heuristics and knowledge-base are applied. As stated before, many general principles and 

guidelines have been proposed to promote product sustainability.129-132 Based on these solutions, 

Table 4.4 lists some widely-used design targets. For instance, using materials produced from 

renewable feedstocks can be an effective approach to reduce the environmental impact at the raw 

material production stage. Note that for a specific product, the domain knowledge is essential for 

generating proper design targets for sustainability. 

4.3.4.2.Generate potential product design alternatives 

To achieve the proposed design targets, promising product design alternatives (i.e., ingredient 

alternatives or processing technologies) should be generated. Product ingredients can be classified 

into different types based on their functionalities. Many ingredient candidates offering the same 

functions can be generated by knowledge-base, material databases or computer-aided tools.151 For 

instance, Cheng et al.15 listed the typical ingredient types and candidates for skin-care creams. The 

generated ingredient candidates can be regarded as new design alternatives. As listed in the third 

column of Table 4.4, specific examples are provided to show how new ingredients were used to  
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Table 4.4. Typical design targets for enhancing product sustainability 

Life cycle 

stage 
Design targets 

Examples of using new 

ingredients  

to achieve design targets 

Raw material 

production 
 Reduce the use of rare and heavy metals 

 Reduce the use of complex polymers and 

derivatives 

 Use materials produced from renewable feedstocks  

 Use blend of biodiesel and 

petro-diesel to reduce the 

consumption of limited crude 

oil.  

Product 

manufacturing 
 Reduce the use of organic solvents 

 Reduce the number of product ingredients and 

production steps 

 Reduce the drop in production yield 

 Naturally colored cotton is 

used to produce clothes so that 

dying process can be avoided. 

Product use  Reduce the use of toxic and carcinogenic materials 

 Reduce the use of heavy and non-durable materials 

 Develop better quality and long lifespan products 

 Use light fiber-matrix 

composite materials to replace 

heavy steel for manufacturing 

vehicle body panel 

Product 

recycle 
 Reduce the use of non-recyclable materials that 

release pollutants during product recycling 

 Use the non-recyclable materials that can be easily 

separated or removed in the recycle processes 

 Use the recyclable materials  

 Use recyclable PET to 

manufacture bottles for 

drinkable water, beverages, 

etc. 

Disposal  Reduce the use of polycyclic aromatic 

hydrocarbons 

 Reduce the use of materials releasing the oxides of 

sulfur and nitrogen upon exposure 

 Use biodegradable materials 

 Use bio-degradable polymers 

to manufacture plastic bags, 

potting cups, etc. 

 

achieve various design targets. For instance, biodegradable polymer can be used for manufacturing 

plastic bags to reduce the environmental impact at the product disposal stage.152 Moreover, various 

methods on synthesizing sustainable processes have been developed such as indicator-based 

approach,153 process intensification,154 techno-ecological synergy,155 etc. Similarly, process 

alternatives can be generated and then selected for enhancing sustainability. 

4.3.5. Step 5: Product Design towards Sustainability 

The generated design alternatives should be assessed by using LCSA or rule-based method (i.e., 

a sustainability checklist). When LCI data is available, LCSA is used for model-based optimization 
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to determine the most sustainable product. Otherwise, the sustainability checklist is used to 

qualitatively screen the sustainable design alternatives. 

4.3.5.1.Using LCSA to optimize the most sustainable product 

As LCSA is applied, Eq. 4.1-4.5 can be re-formulated as a multi-objective optimization 

problem (Eq. 4.17-4.20) for sustainable product design.  

min
𝑑,𝐾

𝐸𝑐𝐼𝐾
𝑑 , 𝐸𝑛𝐼𝐾

𝑑 , 𝑆𝑜𝐼𝐾
𝑑         (4.17) 

s.t. [𝐸𝑐𝐼𝐾
𝑑 , 𝐸𝑛𝐼𝐾

𝑑 , 𝑆𝑜𝐼𝐾
𝑑] = 𝐿𝐶𝑆𝐴(𝑑, 𝐾)   (Sustainability assessments) (4.18) 

𝑡𝑟𝑑 = 𝐹(𝑑)      (Technical requirements) (4.19) 

 𝑡𝑟𝐿 ≤ 𝑡𝑟𝑑 ≤ 𝑡𝑟𝑈     (Design constraints)  (4.20) 

The objective function is formulated in Eq. 4.17. 𝐸𝑐𝐼𝐾
𝑑, 𝐸𝑛𝐼𝐾

𝑑, and 𝑆𝑜𝐼𝐾
𝑑 are the EES impacts of 

d-th product design alternative with K-th end-of-use process. In Eq. 4.18, the EES impacts are 

calculated by using LCSA model (i.e., Eq. 4.7-4.15 in Step 3). Furthermore, design constraints 

must be fulfilled (Eq. 4.19-4.20). 𝑡𝑟𝑑 denotes the technical requirements of 𝑑-th product design 

alternative. Generally, the multi-objective optimization problem can be solved by various methods 

to generate the Pareto front such as 𝜀-constraint approach, genetic algorithm, etc.65 The Pareto front 

provides a better understanding on the tradeoffs in sustainability. Moreover, in principle, a new 

product can be treated as more sustainable if it improves at least one of the EES aspects without 

compromising the others. However, this is always hard to achieve in practice due to the trade-offs 

of the EES aspects and the limited design space. From the designer’s perspective, certain optimal 

solution can be identified for further consideration. For instance, when equal weights for EES 

impacts are assumed, Eq. 4.21 can be solved directly.  

min
𝑑,𝐾

𝐸𝑐𝐼𝐾
𝑑

𝐸𝑐𝐼𝐽
𝑏 +

𝐸𝑛𝐼𝐾
𝑑

𝐸𝑛𝐼𝐽
𝑏 +

𝑆𝑜𝐼𝐾
𝑑

𝑆𝑜𝐼𝐽
𝑏         (4.21) 
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where 𝐸𝑐𝐼𝐽
𝑏, 𝐸𝑛𝐼𝐽

𝑏, and 𝑆𝑜𝐼𝐽
𝑏 are the EES impacts of base-case product decided by Eq. 4.16 in Step 

3. Note that there is no universal consensus on how to balance the EES performance. If their relative 

importance can be accurately quantified in the future, this equal-weight assumption can be relaxed. 

4.3.5.2.Using rule-based method to screen promising design alternatives 

As stated above, sustainability checklist is often used as a rule-based method to qualitatively 

assess sustainability performance. Table 4.5 shows a sustainability checklist that can be used to 

screen the promising design alternatives. At each life cycle stage, three questions related to the 

critical EES issues are considered. For instance, for product manufacturing, the number of 

processing steps and operating conditions greatly influence the costs and environmental burdens. 

Safety is one of the major issues in the social aspect of sustainability. Thus, the exposure to toxic 

or erosive chemicals affecting worker safety is an important consideration. The required 

information for answering the questions is listed in the third column of Table 4.5. Taking the  

Table 4.5. Qualitative sustainability checklist127,128   

Life cycle stage Questions Required information 

Raw material 

production 
 Do the purchasing costs of raw materials increase? 

 Do the raw materials have limited supply in the market? 

 Do the number of accidents associated with raw material 

production increase? 

 Material purchasing costs  

 Suppliers’ production 

capacity 

 Suppliers’ production report 

Product 

manufacturing 
 Does the number of production steps increase? 

 Do the operating conditions get demanding? 

 Are the workers exposed to toxic or erosive chemicals?  

 Manufacturing process 

design 

 Material properties 

Product use  Does the product quality get worse? 

 Does the efficiency decrease if the product uses water or energy? 

 Is the product dangerous or harmful to use?  

 Product attributes 

 Product use conditions 

 Material toxicity data 

Product 

recycling 
 Will the valuable ingredients be lost during recycling? 

 Are extra waste treatments needed in the recycling facility? 

 Will the workers be exposed to new hazardous emissions?  

 General structure of recycle 

processes 

Disposal  Can the product be safely incinerated to recover energy? 

 Is the product harder to be degraded naturally? 

 Does the product release toxic pollutants upon exposure?  

 Material properties (e.g., 

heating value, bio-

degradability, etc.) 
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product manufacturing stage as an example, the first two questions can be answered based on the 

manufacturing process design and the last one on the materials’ toxicity data. Note that if the answer 

to a question is ‘No’, it means that the new design alternative is as good as the existing one on this 

specific aspect. In general, if a design alternative improves the hotspot without making other stages 

worse, it can be kept as a potential solution for improving product sustainability. As the project 

proceeds, it should be further verified by model-based methods (e.g., LCSA). 

4.4.Case Study 1: Composite Bumper Beam for Automotive Vehicle 

Bumper beam is used in automobiles to protect passengers and the vehicle itself. The European 

Commission regulates that from 2015, at least 95% (by weight) of the vehicle must be recycled to 

foster sustainable development. Thus, a more sustainable bumper beam is highly desired. The 

proposed framework is applied for this design problem. 

4.4.1. Step 1. Identify Product Technical Requirements 

Crashworthiness is the most important product attribute for a bumper beam.156 It should bear 

the force and absorb the energy generated in a crash. In general, crash accidents occur in the X-X, 

Y-Y, and X-Y (or Y-X) directions. X indicates the direction in which the vehicle heads and Y stands 

for its transverse direction. For protection purpose, the bumper beam must have high values of 

mechanical strength in these directions.157 Thus, three technical requirements have to be 

considered, namely the Young’s modulus in X-X and Y-Y directions and the shear modulus in X-Y 

direction. Young’s modulus is the ratio of the stress to the strain along an axis. Shear modulus is 

the ratio of the shear stress to the shear strain. The larger the modulus is, the larger force the bumper 

beam can bear.  
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Table 4.6. Candidates of reinforcing fiber and polymeric matrix for use in composite bumper 

beam and their properties  

 

 Young’s 

modulus 

E (GPa) 

Shear 

modulus 

G (GPa) 

Poisson’s 

ratio 𝜂 

Density 

𝜌 
(kg/m3) 

Heating 

value HV 

(MJ/kg) 

Reinforcing 

fiber 

Carbon fiber 220 17 0.26 1900 32.8 

Glass fiber 75 33 0.21 2490 0 

Kenaf fiber  40 16 0.20 1450 15.8 

Jute fiber 20 7 0.38 1300 17.7 

Polymeric 

matrix 

Polyester resin (PR) 3.5 1.4 0.42 1300 34 

Epoxy resin (ER) 3.5 1.4 0.42 1200 34 

Polypropylene (PP) 0.9 0.4 0.42 946 39.8 

Polyethylene (PE) 0.7 0.3 0.42 950 43.5 

Polyethylene   

  terephthalate (PET) 
3.9 1.4 0.39 1320 21.9 

For a commercial bumper beam, the Young’s modulus in the X-X and Y-Y directions (𝐸𝑋𝑋 and 

𝐸𝑌𝑌) must exceed 20 and 5 GPa, respectively. The shear modulus in the X-Y direction (𝐺𝑋𝑌) must 

be larger than 2.5 GPa.157 

4.4.2. Step 2. Identify Base-Case Product and Available Recycle Processes 

4.4.2.1.Generate a base-case product 

The bumper beam can be made of aluminum, alloy, or composite material due to their high 

strength. Among them, the lightweight composite material is preferred for higher fuel efficiency. 

Composite material is made by embedding reinforcing fibers into polymeric matrix. Kim et al.157 

reported that glass fiber and polypropylene (PP) have been used by a Korea automotive company 

to manufacture bumper beams. Here, this existing product is generated as the base-case. In addition, 

it is assumed that the base-case product can be manufactured using injection molding. Again, 

process details (e.g., operating conditions and equipment) are not considered. Meanwhile, he 

volume fractions of fiber (𝑉𝐹𝑓) and matrix (𝑉𝐹𝑚) as well as the fiber’s spatial orientation (𝑆𝑂) are 

decided by solving the following minimization problem: Given the volume of bumper beam, 

minimize its weight subject to the strength constraints.156  
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Table 4.7. Computational results for the composite bumper beam example 

 Base-case product Sustainable product 

Fiber 
Candidate (𝐹𝑠) Glass fiber Carbon fiber 

Weight (kg) 2.49 0.63 

Matrix 
Candidate (𝑀𝑘) PP PP 

Weight (kg)  1.89 2.53 

Fiber spatial orientation (𝑆𝑂) 
[-1, 0, 0],  

[0.64, 0.77, 0] 

[-0.987, 0.161, 0],  

 [-0.635, -0.773, 0] 

Total weight (kg) 4.38 3.15 

Product cost 𝑐𝑚 ($) 4.9 6.9 

Young’s modulus 𝐸𝑋𝑋 (GPa) 20 20 

Young’s modulus 𝐸𝑌𝑌 (GPa) 5 5 

Shear modulus 𝐺𝑋𝑌 (GPa) 2.5 2.5 

End-of-life strategy 𝐸𝑂𝑈𝐽 
Incineration with 

energy recovery 
Pyrolysis 

Economic impact 𝐸𝑐𝐼 (M$)* 283 229 

Environmental impact 𝐸𝑛𝐼 (MPt) * 140 124 

Social impact 𝑆𝑜𝐼 (jobs)* 485 370 
* Based on the functional unit of 10 million pieces of bumper beam 

min 𝑀𝑐𝑏𝑏 = (𝜌𝑔𝑙𝑎𝑠𝑠 ∙ 𝑉𝐹𝑓 + 𝜌𝑃𝑃 ∙ 𝑉𝐹𝑚) ∙ 𝑉𝑐𝑏𝑏       (4.22) 

s.t. 𝐸𝑋𝑋 ≥ 20 𝐺𝑃𝑎,      𝐸𝑌𝑌 ≥ 5 𝐺𝑃𝑎,      𝐺𝑋𝑌 ≥ 2.5 𝐺𝑃𝑎 (Design constraints) (4.23) 

 [𝐸𝑋𝑋 , 𝐸𝑌𝑌, 𝐺𝑋𝑌] = 𝑟𝐹𝐺𝑀(𝑉𝐹𝑓, 𝑉𝐹𝑚, 𝑆𝑂)   (𝑟𝐹𝐺𝑀 model)  

𝑉𝐹𝑓, 𝑉𝐹𝑚, 𝑆𝑂 ∈ 𝑅      (Design variables) 

where 𝑀𝑐𝑏𝑏 and 𝑉𝑐𝑏𝑏 are the mass and volume of composite bumper beam, respectively. 𝑉𝑐𝑏𝑏 is set 

equal to 0.003 m3. 𝜌𝑔𝑙𝑎𝑠𝑠 and 𝜌𝑃𝑃 are the density of glass fiber and PP, respectively. Design 

constraints are expressed in Eq. 4.23. In addition, the revised Fabric Geometry Model (rFGM) is 

used to predict the Young’s modulus and shear modulus.158 They are calculated based on the 

properties of glass fiber and PP, 𝑉𝐹𝑓, 𝑉𝐹𝑚, and 𝑆𝑂. The properties are listed in Table 4.6 and the 

detailed rFGM is elaborated in Eq. S4.1-S4.36 in Supporting Information.  
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This problem is solved using the global solver BARON in GAMS 24.7.4. The solutions are 

listed in the first column of Table 4.7. The base-case product is made of 2.49 kg glass fiber and 

1.89 kg PP. All three design constraints are met. In addition, the product cost (i.e., cost of glass 

fiber and PP and manufacturing cost) is equal to $4.9 per bumper beam. 

4.4.2.2.Search for available recycle processes 

Two recycle processes are available: pyrolysis process and mechanical process. In the pyrolysis 

process, composites are cut into fragments and fed into a heated furnace. The matrix is decomposed 

into lower molecular weight organic substances that are burnt to generate electricity. The fiber is 

recovered and the recovery rate can reach 95%. It can be assumed that the properties of recovered 

fibers do not change while the average length of recovered fibers is shorter. Regarding fiber re-

manufacturability, it can only be recycled once after pyrolysis.159 In the mechanical process, 

composites are cut and ground for size reduction. The small pieces are sieved into two fractions. 

The fine fraction (fiber rich) can be used as filler. The coarse fraction (matrix rich) is incinerated 

for electricity generation.160  

4.4.3. Step 3: Decide Base-case Product Life Cycle and Hotspots 

LCSA is applied here. The EES impacts with four end-of-use processes (i.e., landfill, 

incineration, pyrolysis, and mechanical recycle) are determined to identify the proper one. In 

addition, the EES impacts at each life cycle stage are calculated to identify the hotspots. 

4.4.3.1.Using LCSA 

The LCSA is applied in this example. In the first phase, the functional unit is defined as 10 

million pieces of the bumper beam providing the desired strengths (Eq. 4.23). Note that this number 

is around half of the vehicle production capacity in China in 2015. The system boundary consists 

of all the life cycle stages as shown in Figure 4.1. Note that how the recovered materials are exactly 
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used in other products is not included. The substitution method is employed. The credits of the 

materials and electricity recovered from recycle processes are allocated to the raw material 

production stage. 

In the second phase, LCI data is modelled and collected in the form of Figure 4.4. Tables S4.1-

S4.8 report the LCI data at each life cycle stage. Various assumptions have been made. For instance, 

the transportation distance between any two life cycle stages is set equal to 300 km. It is assumed 

that the amount of input energy of the injection molding process only depends on the selection of 

polymeric matrix. The consumption of diesel is affected by the weight of the bumper beam and is 

used to quantify the impact of product use. Moreover, the social hotspot and PSILCA databases for 

SLCA are not available in our group. Thus, for simplicity, the number of accrued jobs is used to 

represent the social impact.  

In the third phase, the life cycle cost of the base-case product is calculated by using Eq. 4.7-

4.12. Table S4.9 lists the cost coefficients of input materials and energy (i.e., 𝐶𝐼𝑀 and 𝐶𝐼𝐸). Note 

that if the mass of certain input material is less than 0.001 kg, its cost is neglected. Table S10 lists 

the cost coefficients of input facilities (i.e., 𝐶𝐼𝐹). These cost coefficients are market prices because 

there is no available database for life cycle cost coefficients. The translation of LCI data into 

environmental impact was performed in Simapro. The world region boundary is specified and the  

Table 4.8. LCSA results of the base-case product with different end-of-use scenarios for the 

composite bumper beam example 

 Pyrolysis 

process 

Mechanical 

process 

Incineration with 

energy recovery 
Landfill 

Economic impact 𝐸𝑐𝐼𝑏 (M$)* 292 301 283 286 

Environmental impact 𝐸𝑛𝐼𝑏 (MPt)* 155 159 140 141 

Social impact 𝑆𝑜𝐼𝑏 (jobs)* 497 570 485 461 
* Based on the functional unit of 10 million pieces of bumper beam 
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set of World Recipe H/A normalization parameters was applied. For assessing social impact, the 

number of locally accrued jobs is directly retrieved from Tables S4.1-S4.8. 

 

(a) 

 

(b) 

Figure 4.5. (a). Life cycle of base-case product; (b). Life cycle of sustainable product for 

composite bumper beam case study 

In the fourth phase, Table 4.8 lists the LCSA results with different end-of-use strategies for the 

base-case product. The number of jobs created by using incineration is larger than that of using 

landfill. Using incineration also leads to the minimum life cycle cost and environmental impact. 

Using landfill as the reference, incineration with energy recovery should be applied for the base-

case product. The life cycle of the base-case product is shown in Figure 4.5(a). In addition, Figure 

4.6 shows the EES impact of the base-case product at each life cycle stage (black bar). Clearly, 

product use stage accounts for most of the economic and environmental impact. The number of 
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accrued jobs at the product recycle stage is small. Based on these data, the product use and product 

recycle stages are considered as the hotspots for further improvement. 

 

Figure 4.6. Economic, environmental, and social impact of base-case product and sustainable 

product at each life cycle stage for composite bumper beam example 

4.4.4. Step 4: Generate Design Targets and Alternatives for Enhancing Sustainability 

4.4.4.1.Propose product design targets to improve the hotspots 

Based on heuristics in Table 4.4, the following design targets are proposed to improve hotspots:  

1. Use another fiber or matrix for designing more lightweight composites to reduce the impact at 

product use stage 

2. Use another fiber or matrix to match another recycle process so that more materials can be 

recovered and more jobs are created 
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3. Develop cheaper lightweight high-strength materials to replace composite materials  

4. Develop new recycle techniques so that the recovered materials can be reused in multiple 

generations 

Here, the first two design targets are considered to show how ingredients and end-of-use strategy 

should be selected for promoting sustainability.  

4.4.4.2.Generate potential product design alternatives 

Table 4.6 lists new fiber and matrix alternatives generated from Mallick161 such as carbon fiber, 

jute fiber, PE, PET, etc. All these ingredient alternatives are considered to design a more sustainable 

bumper beam. The four end-of-use strategies consisting of landfill, incineration with energy 

recovery, pyrolysis, and mechanical process are considered as well. 

4.4.5. Step 5: Sustainability Assessment for Design Alternatives 

4.4.5.1.Using LCSA to optimize the most sustainable product 

The sustainable composite bumper beam can be generated by solving the multi-objective 

optimization problem in Eq. 4.24. The economic and environmental impacts should be minimized 

while the number of accrued job should be maximized. The EES impact of sustainable product is 

denoted by 𝐸𝑐𝐼, 𝐸𝑛𝐼, and 𝑆𝑜𝐼 and calculated by using LCSA method. The LCI data, cost 

coefficients and the number of accrued jobs are listed in Supporting Information. The impact 

depends on the selection of fiber (𝐹𝑠) and matrix (𝑀𝑘), their volume fractions (𝑉𝐹𝑓 and 𝑉𝐹𝑚), and 

the selection of end-of-use process (𝐸𝑂𝑈𝐽). In addition, design constraints must be met and the 

modulus are calculated by the 𝑟𝐹𝐺𝑀 (Eq. S1-36). Design variables consists of the binary variables 

𝐹𝑠, 𝑀𝑘, and 𝐸𝑂𝑈𝐽 as well as continuous variables 𝑉𝐹𝑓, 𝑉𝐹𝑚, and 𝑆𝑂.  

min
𝐸𝑐𝐼

𝐸𝑐𝐼𝑏
+

𝐸𝑛𝐼

𝐸𝑐𝐼𝑏
−

𝑆𝑜𝐼

𝑆𝑜𝐼𝑏
        (4.24) 
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s.t. [𝐸𝑐𝐼, 𝐸𝑛𝐼, 𝑆𝑜𝐼] = 𝐿𝐶𝑆𝐴(𝐹𝑠, 𝑀𝑘 , 𝑉𝐹𝑓 , 𝑉𝐹𝑚 , 𝐸𝑂𝑈𝐽)   (𝐿𝐶𝑆𝐴 model)  

𝐸𝑋𝑋 ≥ 20 𝐺𝑃𝑎,      𝐸𝑌𝑌 ≥ 5 𝐺𝑃𝑎,      𝐺𝑋𝑌 ≥ 2.5 𝐺𝑃𝑎  (Design constraints) 

[𝐸𝑋𝑋 , 𝐸𝑌𝑌, 𝐺𝑋𝑌] = 𝑟𝐹𝐺𝑀(𝐹𝑠, 𝑀𝑘, 𝑉𝐹𝑓 , 𝑉𝐹𝑚, 𝑆𝑂)   (𝑟𝐹𝐺𝑀 model)  

Design variable: 𝐹𝑠 , 𝑀𝑘, 𝐸𝑂𝑈𝐽 ∈ {0,1} 𝑉𝐹𝑓 , 𝑉𝐹𝑚 , 𝑆𝑂 ∈ 𝑅 

   𝑠 ∈ {𝑐𝑎𝑟𝑏𝑜𝑛 𝑓𝑖𝑏𝑒𝑟, 𝑔𝑙𝑎𝑠𝑠 𝑓𝑖𝑏𝑒𝑟, 𝑘𝑒𝑛𝑎𝑓 𝑓𝑖𝑏𝑒𝑟, 𝑎𝑛𝑑 𝑗𝑢𝑡𝑒 𝑓𝑖𝑏𝑒𝑟}  

   𝑘 ∈ {𝑃𝑅, 𝐸𝑅, 𝑃𝑃, 𝑃𝐸, 𝑃𝐸𝑇}  

     𝐽 ∈ {𝑙𝑎𝑛𝑑𝑓𝑖𝑙𝑙, 𝑖𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑝𝑦𝑟𝑜𝑙𝑦𝑠𝑖𝑠, 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙} 

This multi-objective optimization problem was solved using the 𝜀-constraint approach due to 

its ease of use. The detailed solution procedure can be found in Rangaiah.65 Here, 𝐸𝑐𝐼 is considered 

as the primary objective while 𝐸𝑛𝐼 and 𝑆𝑜𝐼 are converted into inequality constraints. In addition, 

a series of 𝜀 are fixed to divide the range of 𝐸𝑛𝐼 and 𝑆𝑜𝐼 into 10 equal intervals. In doing so, 

multiple 𝜀-constrained single-objective optimization problems were solved using BARON. Figure 

4.7 shows the Pareto front representing the trade-offs among the EES aspects. The minimum 

economic and environmental impacts are 229M$ and 129MPt, respectively. The maximum number 

of accrued jobs is 738 jobs.  

By using base-case product as the reference and assuming equal weights of EES impacts, the 

minimum of 
𝐸𝑐𝐼

𝐸𝑐𝐼𝑏 +
𝐸𝑛𝐼

𝐸𝑐𝐼𝑏 −
𝑆𝑜𝐼

𝑆𝑜𝐼𝑏 is solved to generate an optimal product design for comparison. 

𝐸𝑐𝐼𝑏, 𝐸𝑛𝐼𝑏, and 𝑆𝑜𝐼𝑏 are the EES impact of the base-case product decided in Step 3 (third column 

in Table 4.8). The result which happens to be one of the Pareto optimal solutions in Figure 4.7 is 

listed in the second column of Table 4.7. The new product is made up of carbon fiber and PP. 

Product cost for one piece of bumper beam increases up to $6.9 while the weight decreases to 3.15 

kg. In addition, the number of accrued jobs decreases by 24% to 371 jobs. Compared with the base-

case product, there are 114 fewer jobs for the new product. However, the life cycle cost is reduced 
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to M$229 and life cycle environmental impact is decreased to 129 MPt. In this case, the overall 

sustainability performance improves if equal weight is given to the EES impacts.  

 

Figure 4.7. (a) Pareto Front for Bumper Beam Example; (b) Projection of Pareto Front to 

Economic-Environmental Coordinate; (c) Projection of Pareto Front to Economic-Social 

Coordinate 

Figure 4.5(b) shows the life cycle of one piece of the new product. 0.63 kg carbon fiber and 

2.53 kg PP are used to manufacture the bumper beam. After product use, pyrolysis process is 

applied to generate electricity and 0.6 kg of carbon fiber. These fibers are used with additional raw 

materials in the second generation of product. 
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Figure 4.6 shows the EES impact of the new product at each life cycle stage. At product use 

stage, the associated cost and environmental impact are greatly reduced since the sustainable 

bumper beam is lighter. Therefore, the first design target is achieved. Moreover, at raw material 

production stage, the cost and environmental impact increase. This is because the production of 

carbon fiber is expensive and energy intensive. In this case, pyrolysis process is applied so that the 

expensive carbon fiber can be recovered and reused in another generation. In addition, using 

pyrolysis increases the number of accrued jobs at the product recycle stage. 

The other two design targets are not considered at present. However, with the future 

development of technologies, they may be achieved so that more sustainable bumper beam can be 

designed accordingly.  

4.5.Case Study 2: Lithium ion Battery for Electric Vehicle 

Lithium ion batteries (LIBs) have been used to power the propulsion of electric vehicles (EVs). 

Widely used LIBs include lithium iron phosphate (LFP), lithium nickel manganese cobalt oxide 

(NMC), etc. Note that LIBs are named after the cathode material in use. With the rapid expansion 

of the EV market, more sustainable LIBs are highly desired. In this example, we will not perform 

calculations as in the bumper beam example. This is because most relevant LCI data are not 

available for LIBs. The absence of data does not mean that nothing can be done. Instead, the aim 

of this example is to show how the framework can be used to efficiently identify the information 

needed for designing a sustainable product, rather than getting a detailed design solution. 

4.5.1. Step 1. Identify Product Technical Requirements 

Figure 4.8 lists the five product attributes for LIBs, including large full charge capacity, long 

life span, quick charging, cheap and safe. These attributes are translated into five technical 

requirements by heuristics, which includes energy density, cycle number, charge rate, costs, and 



www.manaraa.com

115 

 

cell materials. Only the most dominant attributes and technical requirements are identified here. 

The specifications of a commercial LIB battery are regarded as design constraints.162  

 Energy density ≥ 120 Wh/kg  Cycle number ≥ 2000 

 Charge rate ≥ 4C  Cost per kWh ≤ 0.4 $/kWh 

 Safe cells  

 

Figure 4.8. House of quality for lithium ion battery in electric vehicle 

4.5.2. Step 2. Identify Base-Case Product and Available Recycle Processes 

4.5.2.1.Generate a base-case product 

Due to its good thermal stability and enhanced safety, LFP has been widely applied in EVs. In 

this example, the existing LFP battery is considered as the base-case product, which can meet the 

pre-specified design targets. Referring to the BatPac database,162 Table 4.9 lists the components 

and ingredients in the LFP battery cell. It consists of anode, cathode, separator, electrolyte, and 

current collectors. The organic solvent n-methyl-2-pyrrolidone (NMP) is used to dissolve the 

binder polyvinylidene fluoride (PVDF) which binds the active material particles as well as the 

current collector together. Moreover, the detailed battery assembly processes have been illustrated 

by Nelson et al.163 The electrodes are first manufactured through a series of steps (e.g., coating, 
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E
n

er
g

y
 

d
en

si
ty

C
y

cl
e 

n
u

m
b

er

C
h

a
rg

e
 

ra
te

C
o
st

s

C
el

l 

m
a

te
ri

a
ls

Product 

attributes

Technical 

requirements



www.manaraa.com

116 

 

solvent evaporation, and slitting) and then packed into a battery cell in a dry room. Afterwards, the 

battery cell is sent for formation cycling following be sealing, testing, module assembly, etc. 

Table 4.9. LFP battery cell formula 

Components Ingredients 

Anode Graphite 

Cathode LFP salt, carbon 

Current collector Copper (for anode), aluminum (for cathode) 

Electrolyte LiPF6, ethylene glycol, dimethyl ether 

Separator PP, PE 

Binder Polyvinylidene fluoride (PVDF) 

Solvent (evaporated) N-methyl-2-pyrrolidone (NMP) 

 

4.5.2.2.Search for available recycle processes 

Two major recycle processes have been developed for recycling metals from spent LIBs: pyro-

metallurgical process and hydro-metallurgical process. In the pyro-metallurgical process, LIBs are 

directly fed to a high temperature furnace where carbon, graphite, electrolyte solvents, and 

polymers are burnt off. The produced gases go through a post-combustion chamber for post-

treatment. The copper and iron form an alloy and then can be further separated for reuse. The 

aluminum and lithium form a slag for use in other applications (e.g., cement industry).164 For the 

hydro-metallurgical process, the spent LFP batteries first go through a series of pretreatments (e.g., 

dismantled, crushing, and screening) to separate different components. After recovering the current 

collectors (i.e., copper and aluminum), the cathode powders go through a series of processes (e.g., 

dissolution, precipitation, etc.) to recover lithium metal for reuse.165 

4.5.3. Step 3: Decide Base-Case Product Life Cycle and Hotspots 
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4.5.3.1.Using rule-based methods 

Since most LCI data for LFP battery is not available, using rule-based methods is necessary. 

According to Figure 4.3, decision has to be made on whether to apply the available recycle 

processes identified in Step 2. Based on the heuristics in Table 4.2, The LFP battery must be 

recycled due to the following reasons. First, many countries have regulated that LIB makers or EV 

manufacturers must collect and recycle the used LIBs. Second, because of a huge demand for 

lithium metal and its limited reserve, the lithium used in the cathode should be recycled for reuse. 

Lastly, the electrolyte LiPF6 should be properly treated since its exposure in nature damages the 

environment.  

Based on the second rule for recycle process selection, the hydro-metallurgical process is 

selected for LFP recycling because it allows the recovery of lithium to re-manufacture new 

batteries. As stated above, the binder, separator, electrolyte, graphite, and carbon cannot be 

recovered in the two recycle processes. After selecting the recycle process for LFP battery, its 

product use and product recycle stages are considered as the hotspots (see heuristics in Table 4.3), 

since the LFP battery is a durable product.  

4.5.4. Step 4: Generate Design Targets and Alternatives for Enhancing Sustainability 

4.5.4.1.Propose product design targets to improve the hotspots 

Three potential design targets are proposed to improve the identified hotspots. 

 Design a new cathode with higher energy density and cycle number to reduce the impact at 

product use stage 

 Develop a new green binder that does not emit toxic gases upon combustion for easy recycling 

 Develop new recycle processes to recover LiPF6 and PVDF 
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4.5.4.2.Generate potential product design alternatives 

Table 4.10. The application of sustainability checklist on LFP battery 

Life cycle 

stages 
Answers Needed information 

Raw material 

production 

 The cost of PAA (~$1.5/kg) is lower than that of PVDF (~$20/kg) 

 The supply of PAA is abundant with more than 10 suppliers. 

 PAA can be produced by well-developed polymerization processes. 

 Market price of PAA 

 Number of PAA suppliers 

 PAA production process 

Product 

manufacturing 

 Solvent recovery process is not needed, as PAA is water-soluble. 

 Since battery assembly requires dry environment, using water as 

solvent may lead to more demanding operating conditions.  

 PAA is not a toxic material (LD50>2.5 g/kg). 

 Process design of battery 

assembly 

 PAA properties (e.g., 

toxicity, solubility) 

Product use  It has been reported that using PAA in LFP battery can lead to a 

higher cycle number,166 a higher energy density, a smaller resistance 

of solid electrolyte interphase and charge exchange.167 

 Quality specifications of 

new battery 

Product recycle  Using PAA will not affect the recovery of lithium and other metals. 

 The combustion of PAA only releases CO2 and H2O 

 No additional hazardous emissions will be generated. 

 Hydro-metallurgical 

process design 

 PAA combustion reaction 

 

For simplicity, only the second design target (i.e, developing a new binder) is discussed. It is 

found that the aqueous binders such as polyacrylic acid (PAA), carboxymethyl cellulose, and 

polyethylene glycol have been investigated to replace the PVDF.168 Here, these three ingredient 

candidates are considered as new design alternatives.  

4.5.5. Step 5: Sustainability Assessment for Design Alternatives 

4.5.5.1.Using rule-based method to screen promising design alternatives 

Since PAA is the cheapest among the three aqueous binders, the sustainable checklist (see Table 

4.5) is applied to qualitatively assess the sustainability of new LFP battery using PAA. The answers 

to the questions are listed in the second column of Table 4.10. The information needed for designing 

such a sustainable product is shown in the third column. For instance, at the raw material production 

stage, the abundant PAA (around $1.5/kg) is much cheaper than PVDF (around $20/kg). At the 

product use stage, it has been reported that using PAA can increase product quality such as cycle 
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number, energy density. Moreover, the combustion of PAA only release CO2 and H2O in the hydro-

metallurgical process, instead of toxic gases. In this case, additional waste treatment is not needed.  

4.6.Conclusion 

This chapter presents a systematic framework for sustainable product design where LCSA, 

sustainability checklist, heuristics, and knowledge-bases are properly integrated and applied. This 

is the first attempt to develop such an approach in the process systems engineering community. 

Product technical requirements are first identified. Then, a base-case product is generated and 

available recycle techniques are collected. Afterwards, the life cycle of base-case product as well 

as the hotspots are decided by using LCSA or rule-based methods. To reduce the impact of hotspots, 

a few design targets and product design alternatives are generated based on knowledge-base and 

heuristics. Finally, LCSA or sustainability checklist is used to determine the most sustainable 

product design. This framework is demonstrated by two examples: composite bumper beam and 

lithium ion battery. Although many assumptions have been made in solving the complex 

sustainable product design problems, the framework is useful for generating promising sustainable 

product design from a large design space. As the design proceeds, the obtained solutions can be 

further verified using rigorous models or experiments. This improves the efficiency and shortens 

the development time. 

Although the framework can be used to generate a more sustainable product, much work is still 

needed before sustainability can be truly claimed. For instance, uncertainties are involved in the 

problem formulation and solutions due to the imprecise data, model assumptions, etc. In the 

literature, many approaches have been proposed to facilitate decision making under uncertainties 

such as probability simulation, interval numbers, and rigorous modeling.169,170  However, it is still 

not clear how those approaches can be employed to handle uncertainties in sustainable product 
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design. Thus, a proper integration should be studied for enhancing design reliability. Furthermore, 

LCSA framework can be used to assess the EES dimensions of sustainability. However, this 

framework still have many limitations. For instance, the impact of human behavior is not included. 

Recently, Bakshi171 proposed six necessary but not sufficient requirements that sustainability 

assessment methods should satisfy. For instance, one of the requirements is that the issues of 

intergenerational equity must be concerned for sustainability. How the requirements can be 

specifically used to improve the current assessment methods should be pursued. Moreover, Eq. 

4.21 assumed that the economic, environmental, and social aspects are equally important. In fact, 

the relative importance among the three metrics and their inter-connections still need to be studied 

in the future. For instance, the economy is nested inside society. Both the economic and society are 

nested in the environment.  
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Chapter 5: Food Product Design: A Hybrid Machine Learning and 

Mechanistic Modeling Approach 

5.1.Introduction 

The food industry is very competitive, with a few multinational companies and many small 

enterprises competing in any given market.172 Food products are complex and have short product 

life. To prosper in such an environment, the rapid development of new food products that 

consumers like is obviously a suitable strategy.173 However, food products are often designed 

based on experience, which is expensive and time-consuming. Thus, an efficient and effective 

approach for expediting new food product design is highly desired. 

During the past two decades, much work has been accomplished in the Process Systems 

Engineering community on product design such as integrated product and process design,33,87 

hybrid modeling,30 statistical-based,83,84 and heuristic-based174 methods for product formulation. 

Only limited amount of work is focused on food products. For example, Meeuse175 proposed a 

process synthesis procedure for structured food products. Dubbelboer et al.176 applied neural 

network, population balance model, emulsion rheology model, etc. to design mayonnaise. 

In this study, the Grand Product Design Model (Figure 5.1a) will be expanded for the design 

of new food products. This comprehensive model accounts for sustainability, government policies, 

global supply chain, selection of ingredients, process design, product pricing, and so on. It captures 

the conceptual relationships among various design tasks and can be readily applied to any type of 

product.2,90,177,178 Figure 1b shows how it is adapted to design food products with desired quality. 

Starting at the top left corner, manufactured food products such as mayonnaise tends to consist of 

many ingredients (e.g., egg, milk, and flour) in certain compositions. The task is to select the 

suitable ingredients and their compositions. Each food ingredient has its own properties (e.g., taste, 
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smell, color, and nutritional value).  Various unit operations (e.g., mixing, freezing, drying, and 

baking) are used to process the ingredients to manufacture the food product. Some food products 

such as ice cream would have an internal structure that depends on the ingredients used and the 

manufacturing process. In general, food products can be consumed directly or after certain 

preparation steps (e.g., cooking instant noodles and frozen dumplings in boiling water). Food 

quality at the bottom of Figure 5.1b has two components. One is sensorial attributes (i.e., sight, 

touch, hearing, taste, and smell) perceived by the five senses of human.179 These sensorial  

 

(a) 

 

Figure 5.1. (a) The Grand Product Design model; (b) Application of Grand Product Design 

model for food product design 
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attributes are related to food characteristics such as color, viscosity, and crispness as listed in Table 

5.1. Another food quality is nutritional value but, because of the intended scope of this chapter, it 

will not be considered in this work. 

At present, nutritional values aside, new food products are designed to match identified targets 

by trial-and-error for certain food characteristics and thus satisfy the consumers’ preferences in 

sensorial attributes. Then, food quality in terms of sensorial attributes is evaluated by a group of 

panelists. The average of the panelists’ sensorial ratings is used to represent food quality.179,180 

Clearly, it is highly desirable to develop methods which can accelerate food product design. 

Fortunately, considerable efforts have been made to develop mechanistic models relating food 

characteristics to processing conditions.176,181 For example, the color of cookies can be related to 

Table 5.1. Sensorial attributes and related food characteristics  

Sensorial attributes Related food characteristics 

Sight Shape, size, surface, color, color intensity, color depth, 

clarity, shininess 

Touch Cohesiveness, elasticity, viscosity, adhesiveness, 

hardness, crumbliness, chewiness, crispness 

Hearing Cooking sound, chewing sound, sound volume 

Taste Acidity, sweetness, spiciness, bitterness, saltiness, 

fattiness, aftertaste, taste intensity 

Smell Spices, bakery, edible, fruit, stinky, sour, odor intensity 

 

the ingredient, baking time and temperature.181 However it is still difficult to predict consumer 

satisfaction on food products because sensorial perception is elusive and subjective. In addition to 

food characteristics, it can be affected by consumer status and environment.182 Additionally, each 

consumer can have significantly different preferences. Statistical methods such as response surface 

methodology (RSM) have been applied to analyze sensorial ratings.183,184 Based on rating data, 

simple functions are regressed to correlate input and output variables. Their applicability is limited 
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to a small number of input variables. Machine learning is an ideal option to overcome this 

limitation. With advanced algorithms, machine learning can deal with many input variables and 

there is a lot of data on consumer satisfaction on food products. However, machine learning cannot 

replace mechanistic models because there is only a limited amount of data relating process 

operating conditions to food characteristics.  

In this work, a generic hybrid mechanistic modeling and machine learning approach is 

developed to design new food products. Mechanistic models derived from the underlying 

mechanisms offer reasonable estimates of food characteristics while the machine learning model 

predicts sensorial satisfaction. The chapter is organized as follows. First, a hybrid modeling 

framework where machine learning, mechanistic models, knowledge-base, and databases are 

employed is formulated for food product design. Then, genetic algorithm (GA) is applied to solve 

this grey-box optimization problem. Finally, a chocolate chip cookie case study is discussed to 

illustrate the applicability of this hybrid modeling approach.  

5.2.Food Product Design by the Hybrid Modeling Approach 

5.2.1. Hybrid Modeling Framework 

Food product design problem is formulated in Eq. 5.1-5.5. The objective function is to maximize 

food product quality quantified by sensorial ratings (𝑞). Design variables consist of the selection 

and composition of food ingredients (𝑥) and the key operating conditions(𝑝𝑑) in food processing. 

Food characteristics 𝑍 are calculated using mechanistic models. Design constraints (𝑍𝐿 and 𝑍𝑈) 

on food characteristics are defined in Eq. 5.3. Although food quality is influenced by food 

characteristics (see Figure 5.1), this relationship is hard to model based on physicochemical 

principles. Hence, food quality is correlated to the ingredients and operating conditions by using a 

machine learning model in Eq. 5.4. Collection of training data for sensorial rating, ingredients, and 
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operating conditions is relatively easy. Eq. 5.5 denotes the lower and upper bounds (𝑐𝐿 and 𝑐𝑈) of 

design variables. 

max
𝑥,𝑝𝑑

   𝑞    (Objective function)    (5.1) 

s.t. 𝑍 = 𝐺(𝑥, 𝑝𝑑)  (Mechanistic models)    (5.2) 

𝑍𝐿 ≤ 𝑍 ≤ 𝑍𝑈  (Design constraints)     (5.3) 

𝑞 = 𝐹(𝑥, 𝑝𝑑)  (Machine learning model)    (5.4) 

𝑐𝐿 ≤ 𝑥, 𝑝𝑑 ≤ 𝑐𝑈  (Bounds)     (5.5) 

 

Figure 5.2. Hybrid modeling framework for food product design 

A systematic hybrid modeling framework is proposed in Figure 5.2 to specify the above design 

formulation. Starting from the left, the preferred sensorial attributes and related food 

characteristics should be identified and design targets are defined. Then, a set of ingredient 

candidates are generated for selection. Meanwhile, the key operating conditions of required unit 

operations are identified as design variables. Machine learning model is built to predict sensorial 

ratings. Mechanistic models are used to calculate food characteristics.  



www.manaraa.com

126 

 

5.3.1.1.Identify Preferred Sensorial Attributes and Targeted Food 

As stated above, food quality depends on the sensorial attributes preferred by consumers. 

Although other factors such as labeling, packaging, and nutritional values may affect consumer’s 

perception on food products, these factors are not considered in this work. To design a high-quality 

food, the preferred sensorial attributes for the particular food product should be first identified. 

Then, the importance of each sensorial attribute are assessed through heuristics or consumer 

survey. For instance, crisp texture is important for designing potato chips and being brown in color 

is essential for chocolate chip cookies.  

Moreover, sensorial attributes are related to food characteristics (Table 5.1). For instance, the 

sight can be affected by the shape, color, clarity, etc. Food taste is related to sweetness, spiciness, 

aftertaste, taste intensity, etc.179,180 In general, the variations in food characteristics can lead to 

different sensations and the desired food characteristics are specified to obtain the new food 

products. These target food characteristics are equivalent to technical requirements for non-food 

products and are considered as design constraints in Eq. 5.3. 

5.3.1.2.Identify Ingredient Candidates and Key Operating Conditions 

To make the food, the required ingredient types can be identified using heuristics and 

knowledge-base. Food ingredients can be classified based on their functionalities.185 For instance, 

a food-grade emulsifier is used for phase stability in emulsion-based foods (e.g., mayonnaise and 

margarine). An essential oil can be used to obtain the desired aroma.  In general, various ingredient 

types are needed to provide multiple desired food characteristics. For instance, the first column in 

Table 5.2 lists the ingredient types required for making chocolate chip cookie such as sugar, flour, 

and condiment.186 For each ingredient type, numerous ingredient candidates can be selected. The 

consideration of all the possible ingredient candidates is not practical. Thus, a preliminary 



www.manaraa.com

127 

 

screening should be carried out to identify the high potential ingredients. Food ingredients are 

often generated from databases, knowledge-base, and heuristics. For instance, the composition of 

raw food ingredients and branded food products is available in websites by FooDB 

(http://foodb.ca/) and USDA (https://ndb.nal.usda.gov/ndb/). A set of ingredient candidates can be 

identified based on availability and properties. Table 5.2 lists 43 commonly-used ingredient 

candidates for chocolate chip cookie such as all-purpose flour, baking soda, egg, butter, and so on. 

Table 5.2. Typical ingredient types and ingredients candidates for chocolate chip cookie 

Ingredient types Typical ingredient candidates 

Sugar and syrup 1. brown sugar 2. corn syrup  

 3. white sugar  

Fat and oil 4. butter 5. peanut butter 

 6. melted semisweet chocolate 7. shortening 

 8. vegetable oil  

Dairy product 9. cream cheese 10. egg 

 11. milk  

Flour 12. all-purpose flour 13. rice cereal 

 14. whole wheat flour  15. oats 

 16. cake mix  

Leavening agent 17. baking powder 18. baking soda 

Chocolate additive 19. semisweet chocolate chip 20. white chocolate chip 

 21. milk chocolate chip 22. cocoa powder 

Coating 23. melted milk chocolate candy 24. confectioners’ sugar 

 25. melted semisweet chocolate  

Condiment 26. almond extract 27. cinnamon  

 28. instant vanilla pudding mix 29. instant coffee granule 

 30. nutmeg  31. orange zest  

 32. salt 33. vanilla extract 

Flavor/texture  34. water 35. dry cherry 

additive 36. pumpkin puree 37. raisin 

 38. almond chip 39. flaked coconut 

 40. macadamia nut 41. peanut 

 42. peanut butter chip 43. walnut 

 

The unit operations that are required to process the ingredients (e.g., blending, frying, freezing, 

and baking) should be identified. The function and usage of major food manufacturing processes 

http://foodb.ca/
https://ndb.nal.usda.gov/ndb/
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are elaborated in the book by Berk187. For each unit operation, many operating conditions should 

be decided as well. By using knowledge-base or screening experiments (e.g., single factor 

experiment, Plackett-Burman design),183 the key operating conditions can be identified as design 

variables. 

5.3.1.3.Build Machine Learning and Mechanistic Models 

Figure 5.3 shows the general workflow of applying machine learning for regression and 

prediction. The vector 𝑋 and 𝑌 are input and output variables, respectively. The training dataset 

[𝑋, 𝑌] is imported into the learning algorithm to build a black-box model. Given an unknown input 

[𝑋𝑈], the model predicts the output [𝑌𝑈]. Learning algorithms include random forest, support 

vector machine, neural network, etc. For each algorithm, there are two types of parameters: hyper- 

and model-parameters. The hyper-parameters defining model structure must be specified manually 

while the model-parameters are generated automatically. The selection of algorithm and hyper-

parameters depends on the experience of users.188 Table A5.1 in Appendix provides heuristics for 

selecting training algorithm and hyper-parameters. May be useful for beginners.  For instance, the 

scaling of input data is required to apply support vector machine. After choosing the algorithm and 

hyper-parameters, model accuracy for new or unknown data must be assessed using cross-

validation such as K-fold cross validation and leave-p-out cross validation. The most popular one 

is K-fold cross-validation that is elaborated in Figure A5.1 in Appendix. When using machine 

learning to predict sensorial ratings, the historical data of sensorial evaluations can be used as 

training data. For each data sample, the input variables should include the chosen ingredients and 

the operating conditions. The output variables are the sensorial ratings. Considering the one in ten 

rule, the number of data samples is preferably ten times more than the number of input variables.  
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Figure 5.3 General workflow of applying machine learning for regression and prediction 

Food characteristics are determined using mechanistic models. Most food characteristics are 

directly related to food properties. For instance, sweetness depends on sugar content. Wine acidity 

is decided by its pH.12 Some food characteristics (e.g., chewiness and hardness) are related to the 

food structure as well. Many mechanistic models for food processing operations have already been 

developed based on transport phenomena, balance equations, kinetics, and so on.189-192  

Table 5.3 shows how the hybrid modeling framework in Figure 5.2 is applied to three different 

food products: bread, mayonnaise, and dehydrated fruit. For instance, to make mayonnaise, egg 

yolk, salt, sugar, and water are used. The ingredients should be well-mixed in a homogenizer. The 

rotational speed, gap size, and flow rate are the key operating conditions. The sight, taste, and  

Table 5.3. Application of hybrid modeling framework for the bread, mayonnaise, and dehydrated 

fruits examples 

 Bread181 Mayonnaise176 Dehydrated fruit193,194 

Ingredient candidates Baking soda, water, 

flour, sugar, etc. 

Egg yolk, salt, sugar, 

water, etc. 

Fresh fruit 

Key operating 

conditions 

Baking temperature, 

baking time 

Rotation speed of 

homogenizer,     

flow rate, gap size 

Drying time, air flow 

rate, air temperature, 

air humidity 

Machine learning model 

for sensorial attributes 

Sight, taste, smell, 

touch 

Sight, taste, touch Sight, taste, touch 

Mechanistic model for 

food characteristics 

Color, crumbliness, 

surface crispness, 

softness 

Color, flavor, taste 

intensity, viscosity 

Color, chewiness, 

nutrient retention, 

rehydration properties 

Training dataset

[ , ]

Learning 

algorithm

Black-box

model

Unknown input

[ ]

Predicted output

[ ]
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touch are the key sensorial attributes for mayonnaise. If the required training data is available, the 

ratings of various attributes can be predicted using machine learning models. The relevant food 

characteristics such as color and viscosity can be determined using mechanistic models.176 

5.2.2. Solution Strategy 

Eq. 5.1-5.5 is a grey-box optimization problem where both mechanistic (i.e., white-box) model 

and machine learning (i.e., black-box) model are used. It cannot be directly solved by derivative-

based solvers (e.g., conopt and ipopt) since the derivative information of black-box models is 

generally not available.195 Currently, two approaches are used to solve grey-box problems. The 

first one is to use a surrogate mathematical model to approximate the black-box model. The 

surrogate model should allow for the use of derivative-based solvers. However, no commercial 

solvers are available to generate surrogate models automatically although prototypes are being 

developed.195,196 The other method is to apply derivative-free algorithms such as simulated 

annealing and genetic algorithms (GA). One of the most popular techniques to handle constraints 

is to use penalty function through which penalties are added to infeasible solutions. Despite their 

limitations, derivative-free algorithms are very easy to apply and can provide useful results at the 

design stage.32  

In this work, GA is utilized to solve the grey-box design problem and Eq. 5.1-5.5 is reformulated 

as Eq. 5.6-5.10. Figure 5.4 illustrates the solution strategy that consists of two types of iterations: 

experimental iteration and GA iteration. Starting from the left, the historical sensorial 
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Figure 5.4. GA-based solution strategy for solving the grey-box food product design problem 

ratings data is collected as training data for the machine learning model (𝐹) to predict sensorial 

ratings. Design constraints calculated by mechanistic models are converted into penalty functions 

𝑃(𝑍) for use in the objective function in Eq. 5.6, which considers only a single overall rating q. If 

design constraints are fulfilled, the penalty function is equal to 0. Otherwise, it is equal to a large 

negative number (−𝑀) in Eq. 5.8. The reformulated problem is solved by GA. After GA iteration, 

a new optimal solution can be obtained. Then, experiments should be conducted to validate the 

design constraints. Sensorial evaluation is performed to get the panelists’ feedbacks and verify the 

predicted sensorial ratings. Once constraints are fulfilled and sensorial rating is confirmed, the 

final optimal product is obtained. Otherwise, the new data are added to the corresponding training 

dataset. Based on the feedback, a casual table can be used to rectify the design formulation. Table 

5.4 provides the casual table for chocolate chip cookies. If the new design is considered to be too 

sweet, a new constraint on sugar content can be added. If the new design is too brown in color, a 

new constraint on the content of carbohydrate and protein can be added. Then, the revised design 
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formulation is resolved by GA. Such an experiment iteration is stopped until the final optimal 

product is obtained.  

max
𝑥,𝑝𝑑

   𝑞 + 𝑃(𝑍)     (Objective function)    (5.6) 

s.t. 𝑍 = 𝐺(𝑥, 𝑝𝑑)    (Mechanistic model)    (5.7) 

 𝑃(𝑍) = {
0         𝑖𝑓 𝑍𝐿 ≤ 𝑍 ≤ 𝑍𝑈

−𝑀    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
 (Penalty functions)    (5.8) 

𝑞 = 𝐹(𝑥, 𝑝𝑑)    (Machine learning model)   (5.9) 

𝑐𝐿 ≤ 𝑥, 𝑝𝑑 ≤ 𝑐𝑈   (Bounds)     (5.10) 

Table 5.4. Casual table for designing chocolate chip cookie 

Deviations/Problems Possible Modifications 

Too brown (pale)  Reduce (increase) baking temperature or baking time 

 Increase (decrease) water content 

 Reduce (increase) the content of carbohydrate and protein 

(e.g., sugar, flour, milk, egg, etc.) 

Too hard  Reduce baking temperature or baking time 

 Reduce flour content or use another flour ingredients 

Too greasy  Reduce fat content 

 Select another fat ingredients  

 Consider new fat ingredient candidates 

Too crumbly  Reduce water content 

 Increase fat content 

Too sweet  Reduce sugar content 

 Consider new sugar and syrup ingredients 

Taste is too simple  Select multiple condiments and flavor additives 

Taste is too old  Consider new condiments and flavor additives 

Chocolaty is too low (high)  Increase (decrease) the chocolate content 

 Consider new chocolate ingredient candidates 

 

For GA iteration, six parameters are specified: stopping criterion, selection method, number of 

GA iterations, the number of individuals in each iteration, and the probability of crossover and 
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mutation operations. In general, a maximum number of GA iterations and roulette-wheel selection 

are used as the stopping criterion and selection method, respectively. The selection of these and 

other parameters depends on the tradeoff between solution quality and computational cost. For 

example, although an increase in the possibility of crossover and mutation may result in better 

solutions, it slows down the GA convergence.197 

5.3. Case Study: Chocolate Chip Cookie 

The proposed framework and algorithm are applied here to design new chocolate chip cookies 

with desired food characteristics. For simplicity, issues such as shelf life, packaging, and cost are 

not considered.  

5.3.1. Scenario 1: Reduced-fat Chocolate Chip Cookies 

5.3.2.1.Identify Preferred Sensorial Attributes and Constrained Food Characteristics 

For cookies, the taste, sight, and touch are the most important sensorial attributes.198 For taste, 

the new cookie is required to be chocolate-flavored and reduced-fat. For given shape and size, the 

color greatly affects the sight sensorial attribute. Typically, cookie should be baked to a brown (or 

yellow-gold) color. Note that the color on cookie surface does not include the color of additives 

such as edible dyes, and black chocolate.198 Moreover, crumbliness and crispness affect the 

sensation of bite and chewing in the mouth. The cookie must be compact without crumb.181 Also, 

a crispy cookie is desired. In summary, five design constraints are considered in this scenario: 

chocolate-flavored, reduced-fat, brown color, no-crumb, and crispy. 

5.3.2.2.Identify Ingredient Candidates and Key Operating Conditions 

Table 5.2 lists the typical ingredient types based on the cookie manufacturing manual.186 

Additionally, 43 ingredient candidates are generated based on the manual and databases, including 

brown sugar, butter, and baking soda. Each ingredient has different properties such as water 
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content, fat content, and density. Their properties are given in Table A5.2 in Appendix. Cookie is 

made by four processes: mixing, cutting, baking, and coating (if applicable).186 The liquid, semi-

solid, and solid ingredients are well-mixed to form a dough. Then, the dough is cut into specific 

shapes and baked in an oven. After this, some ingredients can be coated on the surface to enhance 

the quality. It has been found that the baking time and temperature are the most critical variables 

for making cookies.192 Therefore, the selection and composition of 43 ingredient candidates along 

with the baking time and temperature are regarded as design variables.  

5.3.2.3.Build Machine Learning and Mechanistic Models 

Machine learning is used to predict the single sensorial rating of cookies. The training data is 

given in an EXCEL file which is provided in https://github.com/zx2012flying/Thesis-Supporting-

Information/blob/master/Data%20Samples%20In%20Chapter%205.xlsx. It contains 446 data 

samples extracted from recipe sharing websites. Every data sample consists of the selected 

ingredients, their volumetric quantities, baking temperature, baking time, average sensorial rating, 

and original website. For consistency, the rating is converted into [0, 100] with 100 representing 

the best quality. Taking algorithm performance and the number of data samples into account, 

random forests is selected as the learning algorithm based on the heuristics in Table A5.1. The 

algorithm is called from the Scikit-learn package in Python 3.6. The number of trees and max 

features are tuned to be 16 and 45, respectively. 10-fold cross validation is performed to evaluate 

model accuracy, which is measured by the mean average percentage error (MAPE). Figure 5.5 

shows the validation results. The number of the data samples whose ratings are less than 85 

accounts for 22% of the total dataset. The MAPE of these data is 14%. The MAPE for other 

samples is less than 6% and the overall MAPE is 5.7%. These results show that the machine 

https://github.com/zx2012flying/Thesis-Supporting-Information/blob/master/Data%20Samples%20In%20Chapter%205.xlsx
https://github.com/zx2012flying/Thesis-Supporting-Information/blob/master/Data%20Samples%20In%20Chapter%205.xlsx
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learning model fits the training data well and can be used for prediction. Then, the single sensorial 

rating for cookie quality (𝑞) is predicted by the model in Eq. 5.11-5.12.  

 

Figure 5.5. Ten-fold cross validation results obtained in Scenario 1 

𝑞 = 𝐹(𝑣𝑖, 𝑆𝑖, 𝑇𝐵, 𝑡𝐵)        (5.11) 

𝑣𝑖 =
𝑉𝑖

∑ 𝑉𝑘𝑘
          (5.12) 

where 𝑖 is the number given to an ingredient candidate in Table 5.2; 𝑣𝑖 is the ingredient’s volume 

fraction calculated based on the volumetric quantities of ingredients (𝑉𝑖) in Eq. 5.12.  

Moreover, the maximal volumetric quantity of ingredients are bounded by 𝑉𝑖
𝑈 in Eq. 5.13. 

Their values are given in Table A5.2. Ingredient selection is controlled by the binary variable, 𝑆𝑖. 

If 𝑖-th ingredient is selected, 𝑆𝑖 is equal to 1 and 𝑉𝑖 is larger than 0. Otherwise, 𝑆𝑖 and 𝑉𝑖 are equal 

to 0. The maximum number of ingredients is set to be less than or equal to 12.  𝑇𝐵 and 𝑡𝐵 are the 

baking temperature and time, respectively. Eq. 5.16-5.17 are the bounds for 𝑇𝐵 and 𝑡𝐵, 

respectively.  
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0 ≤ 𝑉𝑖 ≤ 𝑉𝑖
𝑈         (5.13) 

{
𝑆𝑖 = 1,   𝑉𝑖 > 0 𝑖𝑡ℎ 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑛𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑆𝑖 = 𝑉𝑖 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (5.14) 

∑ 𝑆𝑖𝑖 ≤ 12          (5.15) 

145 ≤ 𝑇𝐵 ≤ 225 ℃        (5.16) 

6.5 ≤ 𝑡𝐵 ≤ 16.5 min        (5.17) 

The fat content (𝐹𝐶 in kg fat/kg cookie) and chocolate content (𝐶𝐶 in kg chocolate/kg cookie) 

are calculated based on mass balances. As a reduced-fat cookie, it must contain at least 25% less 

fat than the regular ones whose fat content is 0.28. 

𝐹𝐶 =
𝑀𝑓𝑎𝑡

𝑀𝑐𝑜𝑜𝑘𝑖𝑒
≤ 0.28 × 0.75       (5.18) 

where 

𝑀𝑓𝑎𝑡 = ∑ 𝑚𝑖 ∙ 𝑓𝑐𝑖𝑖         (5.19) 

where 𝑀𝑓𝑎𝑡 is the mass of fat in a cookie and 𝑀𝑐𝑜𝑜𝑘𝑖𝑒 is the mass of cookie. During baking, it can 

be assumed that the water in the dough is totally evaporated while other constituents are retained.199 

Thus, 𝑀𝑓𝑎𝑡 is calculated based on the mass of used ingredients (𝑚𝑖 in kg) and their fat contents 

(𝑓𝑐𝑖 in kg fat/kg ingredient). 𝑚𝑖 depends on the mass fraction of the 𝑖-th ingredient (𝑚𝑓𝑖) which 

can be calculated based on the volumetric quantity in Eq. 5.20. 𝑀𝑑𝑜𝑢𝑔ℎ is the mass of dough which 

is the summation of the mass of selected ingredients: 

𝑚𝑖 = 𝑚𝑓𝑖 ∙ 𝑀𝑑𝑜𝑢𝑔ℎ =
𝑉𝑖∙𝜌𝑖

∑ 𝑉𝑖∙𝜌𝑖𝑖
∙ 𝑀𝑑𝑜𝑢𝑔ℎ      (5.20) 

where 

𝑀𝑑𝑜𝑢𝑔ℎ = ∑ 𝑚𝑖𝑖          (5.21) 
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𝑀𝑐𝑜𝑜𝑘𝑖𝑒 is equal to the mass of dough subtracted by the mass of evaporated water (𝑀𝑤𝑎𝑡𝑒𝑟). 𝑀𝑤𝑎𝑡𝑒𝑟 

depends on 𝑚𝑖 and the water content of 𝑖-th ingredient (𝑤𝑐𝑖 in kg water/kg ingredient).  

𝑀𝑐𝑜𝑜𝑘𝑖𝑒 = 𝑀𝑑𝑜𝑢𝑔ℎ − 𝑀𝑤𝑎𝑡𝑒𝑟       (5.22) 

𝑀𝑤𝑎𝑡𝑒𝑟 = ∑ 𝑚𝑖 ∙ 𝑤𝑐𝑖𝑖         (5.23) 

Moreover, the chocolate content is assumed to be bounded to obtain strong chocolate flavor: 

0.2 ≤ 𝐶𝐶 =
𝑀𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒

𝑀𝑐𝑜𝑜𝑘𝑖𝑒
≤ 0.5       (5.24) 

where 

𝑀𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 = ∑ 𝑚𝑗𝑗         𝑗 ∈ {19, 20, 21, 22,23,25}    (5.25) 

where 𝑀𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 is the mass of chocolate in a cookie. The subscript 𝑗 is the number given to an 

ingredient in Table 5.2.  

Color, crispness, and crumbliness are determined by the mechanistic models that are derived 

based on the modeling of baking process. The process of color forming on cookie surface is known 

as browning. Color variation can be represented by the brownness index (𝐵𝐼) ranging from 0 to 1 

(i.e., white to dark brown). Here, 𝐵𝐼 is bounded for representing a light brown to dark brown 

color.181 

0.4 ≤ 𝐵𝐼 ≤ 0.8         (5.26) 

Browning is the result of the Maillard reaction producing the coloring compound melanoidin. This 

reaction can be initiated when the initial water activity (𝑊𝐴0) is lower than 0.4.198 It is assumed 

that the oven is pre-heated and the surface temperature of dough can reach the baking temperature 

instantly. Under the assumption, 𝑊𝐴0 can be calculated based on the Oswin model.200 

𝑊𝐴0 = [(
100∙𝑀𝑤𝑎𝑡𝑒𝑟

𝑀𝑑𝑜𝑢𝑔ℎ∙𝑒−0.0056𝑇𝐵+5.5)
−2.63

+ 1]

−1

< 0.4     (5.27) 
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The melanoidin gives a brown impression and 𝐵𝐼 is correlated with the mass of melanoidin (𝑚𝑒). 

𝐵𝐼0 is the initial brownness of dough which is assumed to be 0.05.  

𝐵𝐼 = 1 − (1 − 𝐵𝐼0) ∙ 𝑒−0.23∙𝑚𝑒       (5.28) 

The formation of melanoidin follows zero order kinetics: 

𝑑𝑚𝑒

𝑑𝑡
= 𝑘0 ∙ 𝑒

[
−𝐸𝑎

𝑅
(

1

𝑇𝐵
−

1

𝑇𝑅
)]

        (5.29) 

After integration, the mass of melanoidin is 

𝑚𝑒 = 𝑘0 ∙ 𝑒
[

−𝐸𝑎
𝑅

(
1

𝑇𝐵
−

1

𝑇𝑅
)]

∙ 𝑡𝐵       (5.30) 

where 𝐸𝑎 is the activation energy for bakery products (around 100 kJ/mol). 𝑇𝑅 is the reference 

temperature (363 K). The pre-exponential factor 𝑘0 depends on the water activity. For simplicity, 

the mean water activity (𝑊𝐴𝑚) is used to calculate 𝑘0 

𝑘0 = 4.9 × 10−3 ∙
𝑒9∙𝑊𝐴𝑚

2000+𝑒11.3∙𝑊𝐴𝑚
       (5.31) 

𝑊𝐴𝑚 =
1

2
𝑊𝐴0         (5.32) 

Crumb is formed when the elastic dough is transformed into a fixed structure due to starch 

gelatinization. The degree of gelatinization (𝛼) is regarded as a measure for crumbliness. To ensure 

that the cookie has no crumb, 𝛼 should be equal to zero.181 

𝑐𝑟𝑢𝑚𝑏𝑙𝑖𝑛𝑒𝑠𝑠 = 0       𝑖𝑓 𝛼 = 0 (𝑛𝑜 𝑐𝑟𝑢𝑚𝑏)     (5.33) 

To prevent gelatinization, the initial water content in the dough (𝑊𝐶0) cannot exceed 50% of the 

total initial starch content (𝑆𝑇𝐶0). 

𝑊𝐶0 <
𝑆𝑇𝐶0

2
         (5.34) 

𝑆𝑇𝐶0 = ∑ 𝑚𝑖 ∙ 𝑠𝑡𝑐𝑖𝑖         (5.35) 
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where 𝑠𝑡𝑐𝑖 is the starch content of ingredient 𝑖. The crispness depends on the relative mobility of 

its constituents and the glass transition temperature (𝑇𝑔) of cookie can provide a measure of this 

relative mobility. Cookie is presumably consumed at room temperature (𝑇𝑟 = 25°𝐶). Consumers 

obtain a crispy sensation when 𝑇𝑔 is considerably larger than 𝑇𝑟.201 Specifically, the temperature 

difference must be less than (-150K) to make a crispy cookie. The crispness index (𝐶𝐼) ranging 

from 0 to 1 (i.e., not crispy to highly crispy) is181 

𝐶𝐼 = {

0 𝑖𝑓 ∆𝑇 > 0 (𝑛𝑜𝑡 𝑐𝑟𝑖𝑠𝑝𝑦)

−
∆𝑇

150
𝑖𝑓 − 150 < ∆𝑇 < 0 (𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑐𝑟𝑖𝑠𝑝𝑦)

1 𝑖𝑓 ∆𝑇 < −150 (𝑐𝑟𝑖𝑠𝑝𝑦)

   (5.36) 

∆𝑇 = 𝑇𝑟 − 𝑇𝑔 < −150        (5.37)  

 𝑇𝑔 depends on the sugar/starch ratio (𝑟𝑠𝑠) for cookies, which is determined using the initial content 

of sugar (𝑆𝑈𝐶0) and starch 

𝑇𝑔 = 457.1 − 396.32 ∙ 𝑟𝑠𝑠 + 430.27 ∙ 𝑟𝑠𝑠
2       (5.38) 

𝑟𝑠𝑠 =
𝑆𝑈𝐶0

𝑆𝑇𝐶0
          (5.39) 

𝑆𝑈𝐶0 = ∑ 𝑚𝑖 ∙ 𝑠𝑢𝑐𝑖𝑖         (5.40) 

where 𝑠𝑢𝑐𝑖 is the sugar content of the 𝑖-th ingredient (in kg sugar/kg ingredient). In summary, the 

cookie design problem is formulated as: 

max
𝑉𝑖,𝑆𝑖,𝑇𝐵,𝑡𝐵

   𝑞    (A single sensorial rating as objective function)  

s.t.  Eq. 5.19-5.23, 5.25, 5.27-5.32, 5.34-5.35, 5.38-5.40 (Mechanistic models)   

  Eq. 5.18, 5.24, 5.26, 5.33, 5.36-5.37   (Design constraints)   

 Eq. 5.11-5.12      (Machine learning model)   

  Eq. 5.13-5.17      (Bounds)   
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5.3.2.4.Results 

This grey-box optimization problem is solved by GA (see Figure 5.4). The algorithm, models, 

bounds, and penalty functions are encoded in Python 3.6. The maximum number of GA iterations 

is set to be 500 and each iteration contains 100 individuals. The possibility of performing crossover 

and mutation is set to be 0.6. The penalty (−𝑀) is equal to (−50). Additionally, the best design of 

current generation is directly passed to the next generation to ensure that the best design does not 

deteriorate. Ten optimization runs are performed using random initial values. The CPU time per 

run is around 20 seconds. After 10 runs, the optimal solutions are in the range of [91.0, 92.8]. This 

shows that GA with penalty functions can solve the cookie design problem quickly with good 

convergence. 

Table 5.5 shows the optimal cookie design with the largest sensorial rating (i.e., 92.8) for this 

scenario of making reduced-fat chocolate chip cookies. The volumetric quantities of selected 

ingredients and their mass fractions are given. The baking temperature and time are 195°C and 

12.5 min, respectively. All five design constraints are fulfilled. For this run, Figure 5.6 shows the 

best at each GA iteration. If the new iteration does not provide an improved outcome, an additional 

100 individual moves are performed until an improved result is obtained. The solutions produced 

in the first two generations are infeasible and thus penalized by (-50). Beginning with the 3th 

generation, feasible solutions are produced and then improved to the optimal solution.  

This optimal result is different from the original 446 training data samples. For further 

validation, experiment and sensorial evaluation should be performed. The procedure for 

performing experimental validation is not elaborated here because it is not the objective of this 

chapter. Related discussions can be found elsewhere.18 
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Table 5.5. Optimal results for chocolate chip cookie example 

  Scenario 1: Scenario 2: 

  Recipes MF (%) Recipes MF (%) 

Ingredients 

Corn syrup  1 tsp 0.4 1 tsp 0.3 

White sugar  2 cups 21.4 2 cups 18.2 

Peanut butter  1 cup 14.5 1 cup 12.4 

Egg  0.5 piece 1.4 0.5 piece 1.2 

All-purpose flour  1.5 cup 10.1 1.5 cup 8.7 

Whole wheat flour 3.5 cups 23.7 3.5 cup 20.2 

Baking soda 1.5 tsp 0.4 1.5 tsp 0.3 

Milk chocolate chip 0.5 cup 6.7 0.5 cup 5.7 

White chocolate chip 0.5 cup 4.5  0.5 cup 3.8 

Cocoa powder 0.5 cup 2.4 0.5 cup 2.1 

Melted milk chocolate 

candy for coating 
1.5 cup 14.2 1.5 cup 12.1 

Salt 1 tsp 0.3 − − 

Coconut − − 2 cup 8.2 

Vanilla extract − − 1.5 tsp 0.3 

Banana − − 0.6 cup 6.5 

Operating 

conditions 

Baking temperature (𝑇𝐵) 195 °C 175°C 

Baking time (𝑡𝐵) 12.5 min 9.5 min 

Mechanistic 

model 

Fat content (𝐹𝐶) 0.17 0.18 

Chocolate content (𝐶𝐶) 0.26 0.24 

Brownness index (𝐵𝐼) 0.57 0.49 

Crumbliness 0 0 

Crispness index (𝐶𝐼) 1 1 

Machine learning 

model 
Sensorial rating (𝑞) 92.8 93.3 

MF: mass fraction;  tsp: teaspoon (5 mL); cup (237 mL) 

 



www.manaraa.com

142 

 

 

Figure 5.6. The evolution of the best solutions 

5.3.2. Scenario 2: New Flavor Chocolate Chip Cookie 

It is assumed that after sensorial evaluation, the panelists consider that the taste of the new 

cookie in scenario 1 is not sufficiently new to capture a larger market share.173 Based on the casual 

table (Table 5.4), new ingredient candidates of condiments or flavor additives should be generated 

for selection.  

5.3.2.1.Identify Preferred Sensorial Attributes and Constrained Food Characteristics 

Brainstorming concludes that the compound isoamyl acetate (C7H14O2) provides an ‘edible’ 

flavor.202 In this scenario, the condiments and flavor additives of the new recipe in Scenario 1 is 

modified to design a new cookie. 

5.3.2.2.Identify Ingredient Candidates and Key Operating Conditions 

After searching isoamyl acetate in the database (http://foodb.ca), it is found that this compound 

is present in food aromas, and is especially rich in banana. It is decided to add mashed banana to 

the pool of the original flavor additive candidates for selection while keeping the basic recipe in 

39.1

87.1

90.8
92.2 92.8

http://foodb.ca/
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scenario 1. In other words, 21 design variables (i.e., 8 condiment candidates, 11 flavor additive 

candidates, baking time, and baking temperature) are considered. 

5.3.2.3.Build Machine Learning and Mechanistic Models 

Since mashed banana is not included in the original 446 data samples, additional data samples 

are collected to augment the dataset. Another 16 new data samples with mashed banana are 

collected. Then, based on a total 462 data samples, random forest is applied to build a black-box 

model. The design constraints and mechanistic models identified in Scenario 1 are applied. The 

total number of ingredients in Eq. 5.15 is increased from 12 to 14. After 10-fold cross validation, 

the MAPE is equal to 6.3%. The content of mashed banana is assumed to be larger than 5%, but 

less than 20%.  

0.05 ≤
𝑀𝑏𝑎𝑛𝑎𝑛𝑎

𝑀𝑐𝑜𝑜𝑘𝑖𝑒
≤ 0.2         (5.41) 

5.3.2.4.Results 

Again, GA is utilized to solve the design problem. Similar to Scenario 1, 10 optimization runs 

are performed. The maximum sensorial rating is equal to 93.3 and the optimal results are shown 

in the second column of Table 5.5. Compared with the results in Scenario 1, vanilla extract is 

added as condiment. Coconut and banana are selected as flavor additives. In addition, the operating 

conditions are different. Lower baking temperature and shorter baking time are preferred. The 

mass fraction of banana content is 6.5% and other design constraints are fulfilled. 

5.4.Conclusion 

This chapter presents a hybrid machine learning and mechanistic modeling approach for new 

food product design. A systematic framework is proposed to formulate food product design as a 

grey-box optimization problem. Knowledge-base, databases, heuristics, and screening 
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experiments are properly applied to identify a set of ingredient candidates and key operating 

conditions as design variables. As the objective function, food quality is measured by sensorial 

ratings predicted by the black-box model generated through machine learning. Design constraints 

on food characteristics are represented by mechanistic models. Then, a GA-based algorithm is 

applied to solve the grey-box optimization problem. The framework is illustrated using a chocolate 

chip cookie design example which shows good efficiency and convergence of the algorithm.  

This study can be expanded in many ways. In a society where healthy living is emphasized, it 

is natural to include nutritional values in food product design. As shown in Figure 5.1b, the Grand 

Product Design Model must consider aesthetics and human senses because all products have to 

include human factors in addition to functional attributes. The importance of the former increases 

as the product type changes from commodity chemicals to personal products, which demands hard-

to-quantify attributes. By combining models that are based on chemical engineering principles and 

big data, the hybrid approach is ideally suited to performing this transition. Efforts to refine this 

approach and apply it to products such as cosmetic products are underway. 

5.5.Appendix 

Table A5.1. Heuristics for selecting training algorithms and tuning hyper-parameters 

Training 

algorithms 
Heuristics 

Key hyper-

parameters 

Linear 

regression 
 As the easiest method, linear model is always used as a baseline method before using 

other advanced models. 

 Linear model often under-fits in complex systems with many input variables. 

None 

K-nearest 

neighbors 
 Easy to use without heavily tuning hyper-parameters.   

 For sparse datasets and large datasets with many input variables, this method often 

has poor performance in regression.  

 Using 3-5 neighbors and Euclidean distance metric are proper for most cases.188 

Number of 

neighbors, 

distance metric 
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Random 

forest 
 As one of the mostly used methods, random forest works very well for regression 

and classification, even in sparse and complex dataset. 

 Random forest can only be used for interpolation, instead of extrapolation. 

 Tuning the number of trees by testing 2, 4, 8, …, etc. and then do fine-tuning. 

 As good rule of thumb, max features for split is suggested as the number of features 

for regression problems. 

Number of 

trees, 

max features for 

split 

Support 

vector 

machine 

 It is always used for classification such as tasty or not, smells good or not, etc. 

 For complex systems, non-linear kernel functions (e.g., polynomial, radial basis 

function, etc.) are preferred. 

 The performance is sensitive to the setting of hyper-parameters and the scaling of 

input data. The input data should be scaled (e.g., between 0-1). 

 Small regularization parameter may lead to under-fitting while large ones can result 

in overfitting. In general, it is tuned in a descending order. 

Kernel function, 

regularization 

parameter 

 

Neural 

network 
 A large training dataset is required for using neural network. 

 Neural network often provides the best performance for large datasets and complex 

systems with many input variables and large variations.  

 Input features should be scaled to a mean of zero and a variance of one.188  

 Tuning hyper-parameters is difficult and overfitting often occurs with large network. 

 Using at most 2 hidden layers can work well for most datasets.203 

 The number of neurons in each layer is suggested between the number of input and 

output variables.203 

Activation 

function, 

number of 

hidden layers, 

number of 

neurons 

 

A Brief Introduction on K-fold Cross-validation 

The K-fold cross-validation is elaborated here. K is the number of groups that the collected 

dataset is to be split into. There is no formal rule to specify the K and it is usually specified as 5 or 

10. Figure A5.1 shows the mechanism of 5-fold cross validation. The dataset is split into 5 groups 

randomly. For one run, four data groups are used as training dataset to build a black-box model. 

The remaining data group is regarded as test dataset. Its input variables are imported into the black-

box model to predict the outputs. The predicted outputs are compared with the true values to 

calculate the accuracy. This procedure is repeated five times. The average accuracy shows how 

the algorithm and hyper-parameters are suitably selected for the collected dataset. The desired 

accuracy varies in different cases. If the model is not accurate enough, the algorithm or hyper-

parameter should be re-selected. 
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Figure A5.1. Five-fold cross validation for building black-box models 

 

Table A5.2. Food ingredient properties and their volumetric bound 

No. Ingredient Volumetric 

upper 

bound 𝑉𝐿 

Volumetric 

unit 

Density 

𝜌 
(kg/ml) 

Fat 

content 

𝑓𝑐  
(g/g) 

Water 

content 

𝑤𝑐  
(g/g) 

Starch 

content 

𝑠𝑡𝑐 
(g/g) 

Sugar 

content 

𝑠𝑢𝑐 
(g/g) 

1 Brown sugar 2 Cup 0.93 0.00 0.01 0.00 0.97 

2 Corn syrup 4 Teaspoon 1.33 0.00 0.22 0.00 0.00 

3 White sugar 2 Cup 0.80 0.00 0.00 0.00 1.00 

4 Butter 2 Cup 0.96 0.81 0.16 0.00 0.00 

5 Peanut butter 2 Cup 1.09 0.51 0.01 0.00 0.00 

6 
Melted semisweet 

chocolate 
2 Cup 1.00 0.27 0.00 0.05 0.53 

7 Shortening 2 Cup 0.86 1.00 0.00 0.00 0.00 

8 Vegetable oil 2 Cup 0.93 1.00 0.00 0.00 0.00 

9 Cream cheese 2 Cup 0.98 0.34 0.53 0.00 0.00 

10 Egg 3 Piece 0.83 0.10 0.76 0.00 0.00 

11 Milk 4 Tablespoon 1.29 0.09 0.27 0.00 0.54 

12 Almond extract 2 Teaspoon 0.84 0.00 0.00 0.00 0.00 

13 Cinnamon 2 Teaspoon 0.52 0.01 0.11 0.24 0.00 

14 
Instant vanilla 

pudding mix 
2 Teaspoon 0.96 0.01 0.03 0.00 0.00 

15 
Instant coffee 

granules 
2 Teaspoon 0.18 0.00 0.00 0.06 0.00 

16 Nutmeg 2 Teaspoon 0.44 0.36 0.06 0.22 0.00 

17 Orange zest 2 Teaspoon 0.95 0.00 0.00 0.00 0.00 

18 Salt 2 Teaspoon 1.20 0.00 0.00 0.00 0.00 

19 Vanilla extract 2 Teaspoon 0.84 0.00 0.53 0.00 0.00 

Training dataset Test dataset

Run 1 Run 2 Run 3 Run 4 Run 5

Accuracy: a1 a2 a3 a4 a5

Average accuracy = (a1 + a2 + a3 + a4 + a5)/5
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20 All-purpose flour 4 Cup 0.51 0.03 0.00 0.68 0.00 

21 Rice cereal 4 Cup 0.12 0.01 0.04 0.50 0.00 

22 Whole wheat flour 4 Cup 0.51 0.03 0.11 0.68 0.00 

23 Oats 4 Cup 0.42 0.08 0.00 0.14 0.00 

24 Cake mix 4 Cup 0.97 0.12 0.00 0.68 0.46 

25 Baking powder 2 Teaspoon 0.92 0.00 0.05 0.00 0.00 

26 Baking soda 2 Teaspoon 0.92 0.00 0.00 0.00 0.00 

27 
Semisweet 

chocolate chips 
2 Cup 1.00 0.27 0.00 0.05 0.53 

28 
White chocolate 

chips 
2 Cup 0.67 0.27 0.00 0.05 0.80 

29 
Milk chocolate 

chips 
2 Cup 1.00 0.27 0.00 0.05 0.00 

30 Cocoa powder 2 Cup 0.36 0.14 0.03 0.06 0.00 

31 Water 1 Cup 1.00 0.00 1.00 0.00 0.00 

32 Dry cherry 2 Cup 0.68 0.00 0.00 0.01 0.00 

33 Pumpkin puree 2 Cup 1.03 0.00 0.90 0.01 0.00 

34 Raisin 2 Cup 0.70 0.00 0.15 0.00 0.00 

35 Almond chip 2 Cup 0.61 0.53 0.05 0.00 0.00 

36 Flaked coconut 2 Cup 0.36 0.28 0.15 0.00 0.00 

37 Macadamia nut 2 Cup 0.57 0.76 0.01 0.01 0.00 

38 Peanut 2 Cup 0.62 0.49 0.07 0.04 0.00 

39 Peanut butter chip 2 Cup 0.67 0.27 0.00 0.04 0.00 

40 Walnut 3 Cup 0.46 0.72 0.04 0.00 0.00 

41 

Melted milk 

chocolate candy 

(coating) 

2 Cup 0.71 0.30 0.02 0.05 0.75 

42 
Confectioners' 

sugar (coating) 
2 Tablespoon 0.50 0.00 0.00 0.00 0.00 

43 
Melted semisweet 

chocolate (coating) 
2 Cup 1.00 0.27 0.00 0.05 0.53 

*Data of density, fat content, water content, starch content, and sugar content are from United States Department of   

Agriculture Database (https://ndb.nal.usda.gov/ndb/) 

 

https://ndb.nal.usda.gov/ndb/
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Chapter 6: Conclusion and Future Work 

6.1.Summary of Major Achievements 

This research focuses on product design with the consideration of multiple influential business 

and management issues. Multi-scale modeling, heuristics, databases, etc. have been utilized 

properly at various places. The main contributions are summarized below. 

In chapter 2, we study the influence of government policies (i.e., incentives and regulations) 

and corporate social responsibly on product design. Government-company-consumer relationship 

has been well studied. A multi-objective optimization framework is presented from the company’s 

perspective in order to illustrate the trade-off between company profits and social responsibility. 

Different models as well as rule-based methods –quality, consumer utility, product demand, 

product cost, capital budgeting, social indices, and government policy –are employed. A solar 

photovoltaic case study is used to illustrate the framework. In principle, the framework can be 

applied for any product design project, particularly for those with great potentials for creating 

environmental and social benefits to the society.  

In chapter 3, a new product design framework is presented with the simultaneous consideration 

of make-or-buy analysis and supplier selection. Consumer preference, ingredient selection, product 

pricing, make-or-buy analysis, and supplier selection are fully integrated in the framework. This 

framework tells designers when and how the important supply chain issues should be considered 

during the product design processes in order to maximize the profits. Two case studies consisting 

of light duty liquid detergent and controlled release granular herbicide are provided to illustrate the 

framework. In fact, this framework is applicable beyond the two examples. Particularly, it is useful 

for designing formulated and functional products since these products generally involves multiple 

ingredients and thus suppliers.  
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In chapter 4, we focused on sustainable chemical product design. A five-step design framework 

is proposed where the state-of-the-art LCSA methodology, rule-based methods, and general 

sustainable product design principles and knowledge are properly integrated for the development 

of more sustainability products. The economic, environmental, and social issues are simultaneously 

considered to provide a comprehensive view. Two case studies – composite bumper beam and 

lithium ion battery – are provided to illustrate the framework. It is clear that the generic framework 

can be applied to any product regardless of the availability of LCI data, especially those products 

needed to be recycled. 

In chapter 5, a hybrid machine learning and mechanistic modeling approach is proposed to 

expedite the development of new food products. At present, food products are designed by trail-

and-error and the sensorial ratings are determined by a tasting panel. By using machine learning, 

we can predict the sensorial rating reliably. In addition, with the aid of mechanistic models for 

calculating food characteristics, optimal food product can be obtained. Moreover, to solve this grey-

box optimization problem, genetic algorithm is utilized where the design constraints (representing 

the desired food characteristics) are handled as penalty functions. A chocolate chip cookie example 

is provided to illustrate the applicability of the hybrid modeling framework and solution strategy. 

Clearly, this hybrid modeling approach can be applied beyond the considered cookie example. Its 

application is straightforward for general food product design problem. 

6.2.Limitations 

Despite the above achievements in product design and development, the proposed approaches 

still have many limitations. For instance, 

 In Chapter 2, given certain government incentives, the framework is hard to cover the variations 

of product ingredients and manufacturing process design. Because no specific models exist to 
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correlate the variations of ingredients or processes with product quality under certain 

government incentives. Another limitation is the definition of weight factors in Eq. 2.19. The 

weighting factors can greatly influence the optimization results. To reach a universal consensus 

on CSR, a more comprehensive and in-depth evaluation of the weighting factors is required. 

 In Chapter 3, by using the framework, the resulted optimization problem is always complicated 

with a large number of variables and non-convex. When many ingredient candidates and 

suppliers are simultaneously considered, the complexity and search space increases. In this 

case, the computation efficiency is likely to become a limiting factor. 

 In Chapter 4, although the framework can be used to generate a more sustainable product, much 

work is still needed before sustainability can be truly claimed. For instance, uncertainties are 

involved in the problem formulation and solutions due to the imprecise data, model 

assumptions, etc. In the literature, many approaches have been proposed to facilitate decision 

making under uncertainties such as probability simulation, interval numbers, and rigorous 

modeling. However, it is still not clear how those approaches can be employed to handle 

uncertainties in sustainable product design. Moreover, Eq. 4.17 assumed that the economic, 

environmental, and social aspects are equally important. In fact, the relative importance among 

the three metrics and their inter-connections still need to be studied in the future. For instance, 

the economy is nested inside society. Both the economic and society are nested in the 

environment.  

 In this chapter, the application of the hybrid modeling approach actually depends on the 

availability of training data for building machine models and the understanding of underlying 

mechanisms in food processing. Without any of these, the approach cannot be used. Moreover, 

the GA-based solution strategy still suffer many limitations. For instance, it cannot guarantee 
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optimality. In addition, as the number of design variable increases, the computational reliability 

drops significantly. 

6.3.Future Work 

Despite the above important achievements, it is clear that these are theoretical and conceptual 

improvements in the area of product design and development, instead of designing new products 

in practice. Therefore, the design of a few specific real chemical products is worth to be considered 

in the future. The potential products can be  

Cosmetics 

Like the food products, cosmetics are the products with high profit margin and the entire 

cosmetic industry is quite competitive. In this case, cosmetic companies are seeking to reduce the 

time to market and develop better products for commercialization. The former always requires 

efficient and effective design framework and procedures with proper tools, models, and heuristics 

for many products. The latter can be achieved through the innovation of new ingredients and new 

combinations of existing ingredients. Clearly, the synthesis of new materials rely on the 

understanding of material science and chemistry. The new combination of existing ingredients 

should be always optimized so that new products with desired quality can be obtained. Accordingly, 

two research problems should be considered in the future: systematic design framework for 

cosmetics product; reliable models and tools for cosmetics products. 

Lubricant oil 

As an important formulated product, lubricant oil is made up of two types of ingredients: base oil 

and additives. The base oil can be derived from three sources: petroleum, synthetic, and biological. 

At present, petroleum base oil is the mainstream in the lubricant industry. However, with the 
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awareness of the damage to the environment, the trend for designing new synthetic and biological 

lubricant oil is inevitable. Moreover, additives are used to modify and enhance the properties of 

lubricant oil such as rheology, flammability, and freezing point. How to select additives with proper 

composition is always a problem. Accordingly, it is worth to study how the synthetic and biological 

base oil should be designed and what additives should be selected.  
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